Module Core_kernel
Std_kernel
Std_kernel
defines modules exposed by Core_kernel
that are not overridden by Core
. It is used in core.ml
to re-export these modules.
Modules imported from Base without modification
module Applicative = Core_kernel__.Import.Applicative
module Avltree = Core_kernel__.Import.Avltree
module Backtrace = Core_kernel__.Import.Backtrace
module Binary_search = Core_kernel__.Import.Binary_search
module Buffer = Base.Buffer
module Comparisons = Core_kernel__.Import.Comparisons
module Continue_or_stop = Core_kernel__.Import.Continue_or_stop
module Equal = Core_kernel__.Import.Equal
module Exn = Base.Exn
module Expect_test_config = Expect_test_config
module Field = Core_kernel__.Import.Field
module Floatable = Core_kernel__.Import.Floatable
module Formatter = Core_kernel__.Import.Formatter
module Hash = Core_kernel__.Import.Hash
module Heap_block : sig ... end
A heap block is a value that is guaranteed to live on the OCaml heap, and is hence guaranteed to be usable with finalization or in a weak pointer.
module In_channel = Core_kernel__.Import.In_channel
module Int_conversions = Base.Not_exposed_properly.Int_conversions
module Invariant = Core_kernel__.Import.Invariant
module Monad = Core_kernel__.Import.Monad
module Variant = Core_kernel__.Import.Variant
module Obj_array = Base.Not_exposed_properly.Obj_array
module Ordered_collection_common : sig ... end
This module extends
Base.Ordered_collection_common
.
module Out_channel = Core_kernel__.Import.Out_channel
module Poly = Core_kernel__.Import.Poly
module Polymorphic_compare = Poly
module Pretty_printer = Core_kernel__.Import.Pretty_printer
module Random = Base.Random
module Sexp_maybe = Sexp.Sexp_maybe
module Staged = Base.Staged
module Stringable = Core_kernel__.Import.Stringable
module Uchar = Core_kernel__.Import.Uchar
module Validate = Core_kernel__.Import.Validate
module With_return = Core_kernel__.Import.With_return
module Word_size = Core_kernel__.Import.Word_size
Modules that extend Base
module Array : sig ... end
This module extends
Base.Array
.
module Binary_searchable : sig ... end
This module extends the
Base.Binary_searchable
module.
module Bytes : sig ... end
This module extends
Base.Bytes
.
module Char : sig ... end
This module extends
Base.Char
, addingIdentifiable
for making char identifiers andQuickcheckable
to facilitate automated testing with pseudorandom data.
module Comparable : sig ... end
Comparable extends
Base.Comparable
and provides functions for comparing like types.
module Comparator : sig ... end
Extends
Base.Comparator
, providing a type-indexed value that allows you to compare values of that type.
module Container : sig ... end
Provides generic signatures for container data structures.
module Either : sig ... end
This module extends
Base.Either
.
module Error : sig ... end
This module extends
Base.Error
withbin_io
.
module Float : sig ... end
Floating-point numbers.
module Hash_set : sig ... end
A mutable set of elements.
module Hashtbl : sig ... end
module Hashtbl_intf : sig ... end
Hashtbl is a reimplementation of the standard
MoreLabels.Hashtbl
. Its worst case time complexity is O(log(N)) for lookups and additions, unlike the standardMoreLabels.Hashtbl
, which is O(N).
module Info : sig ... end
This module extends
Base.Info
, which provides a type for info-level debug messages.
module Int_intf : sig ... end
This module extends
Base.Int_intf
.
module Int32 : sig ... end
This module extends
Base.Int32
.
module Int63 : sig ... end
This module extends
Base.Int63
.
module Int64 : sig ... end
This module extends
Base.Int64
.
module Linked_queue : sig ... end
This module extends the
Base.Linked_queue
module with bin_io support. As a reminder, theBase.Linked_queue
module is a wrapper around OCaml's standardQueue
module that follows Base idioms and adds some functions.
module Maybe_bound : sig ... end
This module extends
Base.Maybe_bound
with bin_io and with compare functions in the form ofAs_lower_bound
andAs_upper_bound
modules.
module Nativeint : sig ... end
This module extends
Base.Nativeint
.
module Option : sig ... end
This module extends
Base.Option
with bin_io and quickcheck.
module Ordering : sig ... end
Extends
Base.Ordering
, intended to make code that matches on the result of a comparison more concise and easier to read.
module Or_error : sig ... end
This module extends
Base.Or_error
with bin_io.
module Printf : sig ... end
This module extends
Base.Printf
.
module Result : sig ... end
This module extends
Base.Result
.
module Sequence : sig ... end
This module extends
Base.Sequence
with bin_io.
module Set : sig ... end
This module defines the
Set
module forCore
. Functions that construct a set take as an argument the comparator for the element type.
module Sexp : sig ... end
Code for managing s-expressions.
module Sexpable : sig ... end
This module extends
Base.Sexpable
.
module Sign_or_nan : sig ... end
This module extends
Base.Sign_or_nan
with bin_io.
module Source_code_position : sig ... end
This module extends
Base.Source_code_position
.
module String : sig ... end
This module extends
Base.String
.
module Type_equal : sig ... end
This module extends
Base.Type_equal
.
Modules added by Core_kernel
module Arg : sig ... end
INRIA's original command-line parsing library.
module Bag : sig ... end
Imperative set-like data structure.
module Bigbuffer : sig ... end
Extensible string buffers based on Bigstrings.
module Bigsubstring : sig ... end
Substring type based on
Bigarray
, for use in I/O and C-bindings
module Binable : sig ... end
Module types and utilities for dealing with types that support the bin-io binary encoding.
module Bin_prot = Core_kernel__.Core_bin_prot
module Blang : sig ... end
Boolean expressions.
module Bounded_index : sig ... end
module Bounded_int_table : sig ... end
A
Bounded_int_table
is a table whose keys can be mapped to integers in a fixed range, 0 ...num_keys
- 1, wherenum_keys
is specified at table-creation time. The purpose ofBounded_int_table
is to be faster thanHashtbl
in situations where one is willing to pay a space cost for the speed.
module Bus : sig ... end
A
Bus
is a publisher/subscriber system within the memory space of the program. A bus has a mutable set of subscribers, which can be modified usingsubscribe_exn
andunsubscribe
.
module Byte_units : sig ... end
Conversions between units of measure that are based on bytes (like kilobytes, megabytes, gigabytes, and words).
module Day_of_week : sig ... end
Provides a variant type for days of the week (
Mon
,Tue
, etc.) and convenience functions for converting these days into other formats, like seconds since the epoch.
module Debug : sig ... end
Utilities for printing debug messages.
module Deque : sig ... end
A double-ended queue that can shrink and expand on both ends.
module Deriving_hash : sig ... end
Generates hash functions from type expressions and definitions.
module Doubly_linked : sig ... end
Doubly-linked lists.
module Ephemeron : sig ... end
An ephemeron is a pair of pointers, one to a "key" and one to "data".
module Fdeque : sig ... end
A simple polymorphic functional double-ended queue. Use this if you need a queue-like data structure that provides enqueue and dequeue accessors on both ends. For strictly first-in, first-out access, see
Fqueue
.
module Flags : sig ... end
module Float_with_finite_only_serialization : sig ... end
An alias to the
Float.t
type that causes the sexp and bin-io serializers to fail when provided withnan
orinfinity
.
module Fqueue : sig ... end
A simple polymorphic functional queue. Use this data structure for strictly first-in, first-out access to a sequence of values. For a similar data structure with enqueue and dequeue accessors on both ends of a sequence, see
Core_kernel.Fdeque
.
module Gc : sig ... end
This is a wrapper around INRIA's standard
Gc
module. Provides memory management control and statistics, and finalized values.
module Hash_queue : sig ... end
A hash-queue is a combination of a queue and a hashtable that supports constant-time lookup and removal of queue elements in addition to the usual queue operations (enqueue, dequeue). The queue elements are key-value pairs. The hashtable has one entry for each element of the queue.
module Hashable : sig ... end
Functors and interfaces used to make modules hashable.
module Heap : sig ... end
Heap implementation based on a pairing-heap.
module Hexdump : sig ... end
module Hexdump_intf : sig ... end
A functor for displaying a type as a sequence of ASCII characters printed in hexadecimal.
module Host_and_port : sig ... end
Type for the commonly-used notion of host and port in networking.
module Identifiable : sig ... end
A signature for identifier types.
module Immediate_option : sig ... end
module Immediate_option_intf : sig ... end
A non-allocating alternative to the standard Option type.
module Interfaces : sig ... end
Various interface exports.
module Linked_stack : sig ... end
A stack implemented with a list.
module Map : sig ... end
Map
is a functional data structure (balanced binary tree) implementing finite maps over a totally-ordered domain, called a "key".
module Md5 : sig ... end
This module implements the
MD5
message-digest algorithm as described IETF RFC 1321.t
is the result type andval digest_string : string -> t
is the implementation of the algorithm itself.
module Memo : sig ... end
Non-re-entrant memoization.
module Month : sig ... end
Provides a variant type for representing months (e.g.,
Jan
,Feb
, orNov
) and functions for converting them to other formats (like an int).
module No_polymorphic_compare : sig ... end
Open this in modules where you don't want to accidentally use polymorphic comparison. Then, use
Poly.(<)
, for example, where needed.
module Nothing : sig ... end
An uninhabited type. This is useful when interfaces require that a type be specified, but the implementer knows this type will not be used in their implementation of the interface.
module Only_in_test : sig ... end
This module can be used to safely expose functions and values in signatures that should only be used in unit tests.
module Option_array : sig ... end
This module extends
Base.Option_array
with bin_io.
module Optional_syntax : sig ... end
Interfaces for use with the
match%optional
syntax, provided byppx_optional
.
module Percent : sig ... end
A scale factor, not bounded between 0% and 100%, represented as a float.
module Perms : sig ... end
These types are intended to be used as phantom types encoding the permissions on a given type.
module Pid : sig ... end
Process ID.
module Pool : sig ... end
module Pool_intf : sig ... end
A manual memory manager for a set of mutable tuples. The point of
Pool
is to allocate a single long-lived block of memory (the pool) that lives in the OCaml major heap, and then to reuse the block, rather than continually allocating blocks on the minor heap.
module Popcount = Base.Popcount
module Printexc : sig ... end
This module is here to ensure that we don't use the functions in
Caml.Printexc
inadvertently.
module Queue : sig ... end
This module extends
Base.Queue
with bin_io.
module Quickcheck : sig ... end
module Quickcheck_intf : sig ... end
Quickcheck is a library that uses predicate-based tests and pseudo-random inputs to automate testing.
module Quickcheckable : sig ... end
Provides functors for making a module quickcheckable with
Quickcheck
.
module Robustly_comparable : sig ... end
This interface compares float-like objects with a small tolerance.
module Set_once : sig ... end
A
'a Set_once.t
is like an'a option ref
that can only be set once. ASet_once.t
starts out asNone
, the firstset
transitions it toSome
, and subsequentset
s fail.
module Splittable_random = Splittable_random
module Stable_comparable : sig ... end
module Stable_unit_test : sig ... end
The tests generated by these functors are run like any other unit tests: by the inline test runner when the functor is applied.
module Stack : sig ... end
module String_id : sig ... end
Like
Identifiable
, but witht = private string
and stable modules.
module Substring : sig ... end
A substring is a contiguous set of characters within a string. Creating a substring does not copy. Therefore modifying the string also modifies the substring.
module Substring_intf : sig ... end
Interface for
Substring
.
module Timing_wheel_ns : sig ... end
module Tuple : sig ... end
Functors and signatures for dealing with modules for tuples.
module Tuple_type : sig ... end
Tuple-like types used in
Pool
.
module Tuple2 = Tuple.T2
module Tuple3 = Tuple.T3
module Type_immediacy : sig ... end
Witnesses that express whether a type's values are always, sometimes, or never immediate.
module Uniform_array : sig ... end
This module extends
Base.Uniform_array
with bin_io.
module Union_find : sig ... end
Imperative data structure for representing disjoint sets.
module Unique_id : sig ... end
Functors for creating modules that mint unique identifiers.
module Unit_of_time : sig ... end
Represents a unit of time, e.g., that used by
Time.Span.to_string_hum
. Comparison respects Nanosecond < Microsecond < Millisecond < Second < Minute < Hour < Day.
module Univ : sig ... end
An extensible "universal" variant type.
module Univ_map : sig ... end
Universal/heterogeneous maps, useful for storing values of arbitrary type in a single map.
module Validated : sig ... end
module type Unique_id = Unique_id.Id
Top-level values
type 'a _maybe_bound
= 'a Maybe_bound.t
=
|
Incl of 'a
|
Excl of 'a
|
Unbounded
val does_raise : (unit -> 'a) -> bool
val am_running_inline_test : bool
val am_running_test : bool
val sec : Core_kernel__.Import.float -> Core_kernel__.Time_float.Span.t
include Core_kernel__.Std_internal
include
d first so that everything else shadows it
include Core_kernel__.Core_pervasives
Exceptions
Comparisons
val (=) : 'a -> 'a -> bool
e1 = e2
tests for structural equality ofe1
ande2
. Mutable structures (e.g. references and arrays) are equal if and only if their current contents are structurally equal, even if the two mutable objects are not the same physical object. Equality between functional values raisesInvalid_argument
. Equality between cyclic data structures may not terminate.
val (<>) : 'a -> 'a -> bool
Negation of
Poly
.( = ).
val (<) : 'a -> 'a -> bool
See
Poly
.( >= ).
val (>) : 'a -> 'a -> bool
See
Poly
.( >= ).
val (<=) : 'a -> 'a -> bool
See
Poly
.( >= ).
val (>=) : 'a -> 'a -> bool
Structural ordering functions. These functions coincide with the usual orderings over integers, characters, strings, byte sequences and floating-point numbers, and extend them to a total ordering over all types. The ordering is compatible with
( = )
. As in the case of( = )
, mutable structures are compared by contents. Comparison between functional values raisesInvalid_argument
. Comparison between cyclic structures may not terminate.
val compare : 'a -> 'a -> int
compare x y
returns0
ifx
is equal toy
, a negative integer ifx
is less thany
, and a positive integer ifx
is greater thany
. The ordering implemented bycompare
is compatible with the comparison predicates=
,<
and>
defined above, with one difference on the treatment of the float valueCaml
.nan. Namely, the comparison predicates treatnan
as different from any other float value, including itself; whilecompare
treatsnan
as equal to itself and less than any other float value. This treatment ofnan
ensures thatcompare
defines a total ordering relation.compare
applied to functional values may raiseInvalid_argument
.compare
applied to cyclic structures may not terminate.The
compare
function can be used as the comparison function required by theSet.Make
andMap.Make
functors, as well as theList.sort
andArray.sort
functions.
val min : 'a -> 'a -> 'a
Return the smaller of the two arguments. The result is unspecified if one of the arguments contains the float value
nan
.
val max : 'a -> 'a -> 'a
Return the greater of the two arguments. The result is unspecified if one of the arguments contains the float value
nan
.
val (==) : 'a -> 'a -> bool
e1 == e2
tests for physical equality ofe1
ande2
. On mutable types such as references, arrays, byte sequences, records with mutable fields and objects with mutable instance variables,e1 == e2
is true if and only if physical modification ofe1
also affectse2
. On non-mutable types, the behavior of( == )
is implementation-dependent; however, it is guaranteed thate1 == e2
impliescompare e1 e2 = 0
.
Boolean operations
val (&&) : bool -> bool -> bool
The boolean 'and'. Evaluation is sequential, left-to-right: in
e1 && e2
,e1
is evaluated first, and if it returnsfalse
,e2
is not evaluated at all.
Debugging
val __LOC__ : string
__LOC__
returns the location at which this expression appears in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d"
val __LINE__ : int
__LINE__
returns the line number at which this expression appears in the file currently being parsed by the compiler.
val __POS__ : string * int * int * int
__POS__
returns a tuple(file,lnum,cnum,enum)
, corresponding to the location at which this expression appears in the file currently being parsed by the compiler.file
is the current filename,lnum
the line number,cnum
the character position in the line andenum
the last character position in the line.
val __LOC_OF__ : 'a -> string * 'a
__LOC_OF__ expr
returns a pair(loc, expr)
whereloc
is the location ofexpr
in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d"
val __LINE_OF__ : 'a -> int * 'a
__LINE_OF__ expr
returns a pair(line, expr)
, whereline
is the line number at which the expressionexpr
appears in the file currently being parsed by the compiler.
val __POS_OF__ : 'a -> (string * int * int * int) * 'a
__POS_OF__ expr
returns a pair(expr,loc)
, whereloc
is a tuple(file,lnum,cnum,enum)
corresponding to the location at which the expressionexpr
appears in the file currently being parsed by the compiler.file
is the current filename,lnum
the line number,cnum
the character position in the line andenum
the last character position in the line.
Composition operators
Integer arithmetic
val (/) : int -> int -> int
Integer division. Raise
Division_by_zero
if the second argument is 0. Integer division rounds the real quotient of its arguments towards zero. More precisely, ifx >= 0
andy > 0
,x / y
is the greatest integer less than or equal to the real quotient ofx
byy
. Moreover,(- x) / y = x / (- y) = - (x / y)
.
val (mod) : int -> int -> int
Integer remainder. If
y
is not zero, the result ofx mod y
satisfies the following properties:x = (x / y) * y + x mod y
andabs(x mod y) <= abs(y) - 1
. Ify = 0
,x mod y
raisesDivision_by_zero
. Note thatx mod y
is negative only ifx < 0
. RaiseDivision_by_zero
ify
is zero.
Bitwise operations
val (lsl) : int -> int -> int
n lsl m
shiftsn
to the left bym
bits. The result is unspecified ifm < 0
orm >= bitsize
, wherebitsize
is32
on a 32-bit platform and64
on a 64-bit platform.
Floating-point arithmetic
OCaml's floating-point numbers follow the IEEE 754 standard, using double precision (64 bits) numbers. Floating-point operations never raise an exception on overflow, underflow, division by zero, etc. Instead, special IEEE numbers are returned as appropriate, such as infinity
for 1.0 /. 0.0
, neg_infinity
for -1.0 /. 0.0
, and nan
('not a number') for 0.0 /. 0.0
. These special numbers then propagate through floating-point computations as expected: for instance, 1.0 /. infinity
is 0.0
, and any arithmetic operation with nan
as argument returns nan
as result.
val expm1 : float -> float
expm1 x
computesexp x -. 1.0
, giving numerically-accurate results even ifx
is close to0.0
.- since
- 3.12.0
val log1p : float -> float
log1p x
computeslog(1.0 +. x)
(natural logarithm), giving numerically-accurate results even ifx
is close to0.0
.- since
- 3.12.0
val acos : float -> float
Arc cosine. The argument must fall within the range
[-1.0, 1.0]
. Result is in radians and is between0.0
andpi
.
val asin : float -> float
Arc sine. The argument must fall within the range
[-1.0, 1.0]
. Result is in radians and is between-pi/2
andpi/2
.
val atan2 : float -> float -> float
atan2 y x
returns the arc tangent ofy /. x
. The signs ofx
andy
are used to determine the quadrant of the result. Result is in radians and is between-pi
andpi
.
val hypot : float -> float -> float
hypot x y
returnssqrt(x *. x + y *. y)
, that is, the length of the hypotenuse of a right-angled triangle with sides of lengthx
andy
, or, equivalently, the distance of the point(x,y)
to origin.- since
- 4.00.0
val ceil : float -> float
Round above to an integer value.
ceil f
returns the least integer value greater than or equal tof
. The result is returned as a float.
val floor : float -> float
Round below to an integer value.
floor f
returns the greatest integer value less than or equal tof
. The result is returned as a float.
val copysign : float -> float -> float
copysign x y
returns a float whose absolute value is that ofx
and whose sign is that ofy
. Ifx
isnan
, returnsnan
. Ify
isnan
, returns eitherx
or-. x
, but it is not specified which.- since
- 4.00.0
val mod_float : float -> float -> float
mod_float a b
returns the remainder ofa
with respect tob
. The returned value isa -. n *. b
, wheren
is the quotienta /. b
rounded towards zero to an integer.
val frexp : float -> float * int
frexp f
returns the pair of the significant and the exponent off
. Whenf
is zero, the significantx
and the exponentn
off
are equal to zero. Whenf
is non-zero, they are defined byf = x *. 2 ** n
and0.5 <= x < 1.0
.
val float : int -> float
Same as
Caml
.float_of_int.
val truncate : float -> int
Same as
Caml
.int_of_float.
val int_of_float : float -> int
Truncate the given floating-point number to an integer. The result is unspecified if the argument is
nan
or falls outside the range of representable integers.
val nan : float
A special floating-point value denoting the result of an undefined operation such as
0.0 /. 0.0
. Stands for 'not a number'. Any floating-point operation withnan
as argument returnsnan
as result. As for floating-point comparisons,=
,<
,<=
,>
and>=
returnfalse
and<>
returnstrue
if one or both of their arguments isnan
.
val epsilon_float : float
The difference between
1.0
and the smallest exactly representable floating-point number greater than1.0
.
type fpclass
= Caml.fpclass
=
The five classes of floating-point numbers, as determined by the
Caml
.classify_float function.
val classify_float : float -> fpclass
Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.
String operations
More string operations are provided in module String
.
Character operations
More character operations are provided in module Char
.
Unit operations
String conversion functions
val string_of_bool : bool -> string
Return the string representation of a boolean. As the returned values may be shared, the user should not modify them directly.
val bool_of_string : string -> bool
Convert the given string to a boolean. Raise
Invalid_argument "bool_of_string"
if the string is not"true"
or"false"
.
val int_of_string : string -> int
Convert the given string to an integer. The string is read in decimal (by default) or in hexadecimal (if it begins with
0x
or0X
), octal (if it begins with0o
or0O
), or binary (if it begins with0b
or0B
). RaiseFailure "int_of_string"
if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in typeint
.
Pair operations
List operations
More list operations are provided in module List
.
Input/output
Note: all input/output functions can raise Sys_error
when the system calls they invoke fail.
type in_channel
= Caml.in_channel
The type of input channel.
type out_channel
= Caml.out_channel
The type of output channel.
val stdin : Caml.in_channel
The standard input for the process.
val stdout : Caml.out_channel
The standard output for the process.
val stderr : Caml.out_channel
The standard error output for the process.
Output functions on standard output
Output functions on standard error
Input functions on standard input
val read_line : unit -> string
Flush standard output, then read characters from standard input until a newline character is encountered. Return the string of all characters read, without the newline character at the end.
General output functions
type open_flag
= Caml.open_flag
=
val open_out : string -> Caml.out_channel
Open the named file for writing, and return a new output channel on that file, positionned at the beginning of the file. The file is truncated to zero length if it already exists. It is created if it does not already exists.
val open_out_bin : string -> Caml.out_channel
Same as
Caml
.open_out, but the file is opened in binary mode, so that no translation takes place during writes. On operating systems that do not distinguish between text mode and binary mode, this function behaves likeCaml
.open_out.
val open_out_gen : Caml.open_flag list -> int -> string -> Caml.out_channel
open_out_gen mode perm filename
opens the named file for writing, as described above. The extra argumentmode
specify the opening mode. The extra argumentperm
specifies the file permissions, in case the file must be created.Caml
.open_out andCaml
.open_out_bin are special cases of this function.
val flush : Caml.out_channel -> unit
Flush the buffer associated with the given output channel, performing all pending writes on that channel. Interactive programs must be careful about flushing standard output and standard error at the right time.
val output_char : Caml.out_channel -> char -> unit
Write the character on the given output channel.
val output_string : Caml.out_channel -> string -> unit
Write the string on the given output channel.
val output_bytes : Caml.out_channel -> bytes -> unit
Write the byte sequence on the given output channel.
val output : Caml.out_channel -> bytes -> int -> int -> unit
output oc buf pos len
writeslen
characters from byte sequencebuf
, starting at offsetpos
, to the given output channeloc
. RaiseInvalid_argument "output"
ifpos
andlen
do not designate a valid range ofbuf
.
val output_substring : Caml.out_channel -> string -> int -> int -> unit
Same as
output
but take a string as argument instead of a byte sequence.
val output_byte : Caml.out_channel -> int -> unit
Write one 8-bit integer (as the single character with that code) on the given output channel. The given integer is taken modulo 256.
val output_binary_int : Caml.out_channel -> int -> unit
Write one integer in binary format (4 bytes, big-endian) on the given output channel. The given integer is taken modulo 232. The only reliable way to read it back is through the
Caml
.input_binary_int function. The format is compatible across all machines for a given version of OCaml.
val output_value : Caml.out_channel -> 'a -> unit
Write the representation of a structured value of any type to a channel. Circularities and sharing inside the value are detected and preserved. The object can be read back, by the function
Caml
.input_value. See the description of moduleMarshal
for more information.Caml
.output_value is equivalent toMarshal
.to_channel with an empty list of flags.
val seek_out : Caml.out_channel -> int -> unit
seek_out chan pos
sets the current writing position topos
for channelchan
. This works only for regular files. On files of other kinds (such as terminals, pipes and sockets), the behavior is unspecified.
val pos_out : Caml.out_channel -> int
Return the current writing position for the given channel. Does not work on channels opened with the
Open_append
flag (returns unspecified results).
val out_channel_length : Caml.out_channel -> int
Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless.
val close_out : Caml.out_channel -> unit
Close the given channel, flushing all buffered write operations. Output functions raise a
Sys_error
exception when they are applied to a closed output channel, exceptclose_out
andflush
, which do nothing when applied to an already closed channel. Note thatclose_out
may raiseSys_error
if the operating system signals an error when flushing or closing.
val close_out_noerr : Caml.out_channel -> unit
Same as
close_out
, but ignore all errors.
val set_binary_mode_out : Caml.out_channel -> bool -> unit
set_binary_mode_out oc true
sets the channeloc
to binary mode: no translations take place during output.set_binary_mode_out oc false
sets the channeloc
to text mode: depending on the operating system, some translations may take place during output. For instance, under Windows, end-of-lines will be translated from\n
to\r\n
. This function has no effect under operating systems that do not distinguish between text mode and binary mode.
General input functions
val open_in : string -> Caml.in_channel
Open the named file for reading, and return a new input channel on that file, positionned at the beginning of the file.
val open_in_bin : string -> Caml.in_channel
Same as
Caml
.open_in, but the file is opened in binary mode, so that no translation takes place during reads. On operating systems that do not distinguish between text mode and binary mode, this function behaves likeCaml
.open_in.
val open_in_gen : Caml.open_flag list -> int -> string -> Caml.in_channel
open_in_gen mode perm filename
opens the named file for reading, as described above. The extra argumentsmode
andperm
specify the opening mode and file permissions.Caml
.open_in andCaml
.open_in_bin are special cases of this function.
val input_char : Caml.in_channel -> char
Read one character from the given input channel. Raise
End_of_file
if there are no more characters to read.
val input_line : Caml.in_channel -> string
Read characters from the given input channel, until a newline character is encountered. Return the string of all characters read, without the newline character at the end. Raise
End_of_file
if the end of the file is reached at the beginning of line.
val input : Caml.in_channel -> bytes -> int -> int -> int
input ic buf pos len
reads up tolen
characters from the given channelic
, storing them in byte sequencebuf
, starting at character numberpos
. It returns the actual number of characters read, between 0 andlen
(inclusive). A return value of 0 means that the end of file was reached. A return value between 0 andlen
exclusive means that not all requestedlen
characters were read, either because no more characters were available at that time, or because the implementation found it convenient to do a partial read;input
must be called again to read the remaining characters, if desired. (See alsoCaml
.really_input for reading exactlylen
characters.) ExceptionInvalid_argument "input"
is raised ifpos
andlen
do not designate a valid range ofbuf
.
val really_input : Caml.in_channel -> bytes -> int -> int -> unit
really_input ic buf pos len
readslen
characters from channelic
, storing them in byte sequencebuf
, starting at character numberpos
. RaiseEnd_of_file
if the end of file is reached beforelen
characters have been read. RaiseInvalid_argument "really_input"
ifpos
andlen
do not designate a valid range ofbuf
.
val really_input_string : Caml.in_channel -> int -> string
really_input_string ic len
readslen
characters from channelic
and returns them in a new string. RaiseEnd_of_file
if the end of file is reached beforelen
characters have been read.
val input_byte : Caml.in_channel -> int
Same as
Caml
.input_char, but return the 8-bit integer representing the character. RaiseEnd_of_file
if an end of file was reached.
val input_binary_int : Caml.in_channel -> int
Read an integer encoded in binary format (4 bytes, big-endian) from the given input channel. See
Caml
.output_binary_int. RaiseEnd_of_file
if an end of file was reached while reading the integer.
val input_value : Caml.in_channel -> 'a
Read the representation of a structured value, as produced by
Caml
.output_value, and return the corresponding value. This function is identical toMarshal
.from_channel; see the description of moduleMarshal
for more information, in particular concerning the lack of type safety.
val seek_in : Caml.in_channel -> int -> unit
seek_in chan pos
sets the current reading position topos
for channelchan
. This works only for regular files. On files of other kinds, the behavior is unspecified.
val pos_in : Caml.in_channel -> int
Return the current reading position for the given channel.
val in_channel_length : Caml.in_channel -> int
Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless. The returned size does not take into account the end-of-line translations that can be performed when reading from a channel opened in text mode.
val close_in : Caml.in_channel -> unit
Close the given channel. Input functions raise a
Sys_error
exception when they are applied to a closed input channel, exceptclose_in
, which does nothing when applied to an already closed channel.
val close_in_noerr : Caml.in_channel -> unit
Same as
close_in
, but ignore all errors.
val set_binary_mode_in : Caml.in_channel -> bool -> unit
set_binary_mode_in ic true
sets the channelic
to binary mode: no translations take place during input.set_binary_mode_out ic false
sets the channelic
to text mode: depending on the operating system, some translations may take place during input. For instance, under Windows, end-of-lines will be translated from\r\n
to\n
. This function has no effect under operating systems that do not distinguish between text mode and binary mode.
Operations on large files
module LargeFile = Core_kernel__.Core_pervasives.LargeFile
Operations on large files. This sub-module provides 64-bit variants of the channel functions that manipulate file positions and file sizes. By representing positions and sizes by 64-bit integers (type
int64
) instead of regular integers (typeint
), these alternate functions allow operating on files whose sizes are greater thanmax_int
.
References
type 'a ref
= 'a Caml.ref
=
{
mutable contents : 'a;
}
The type of references (mutable indirection cells) containing a value of type
'a
.
val ref : 'a -> 'a ref
Return a fresh reference containing the given value.
val (!) : 'a ref -> 'a
!r
returns the current contents of referencer
. Equivalent tofun r -> r.contents
.
val (:=) : 'a ref -> 'a -> unit
r := a
stores the value ofa
in referencer
. Equivalent tofun r v -> r.contents <- v
.
val incr : int ref -> unit
Increment the integer contained in the given reference. Equivalent to
fun r -> r := succ !r
.
val decr : int ref -> unit
Decrement the integer contained in the given reference. Equivalent to
fun r -> r := pred !r
.
type ('a, 'b) result
= ('a, 'b) Caml.result
=
|
Ok of 'a
|
Error of 'b
Operations on format strings
type ('a, 'b, 'c, 'd, 'e, 'f) format6
= ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6
Format strings have a general and highly polymorphic type
('a, 'b, 'c, 'd, 'e, 'f) format6
. The two simplified types,format
andformat4
below are included for backward compatibility with earlier releases of OCaml.The meaning of format string type parameters is as follows:
'a
is the type of the parameters of the format for formatted output functions (printf
-style functions);'a
is the type of the values read by the format for formatted input functions (scanf
-style functions).
'b
is the type of input source for formatted input functions and the type of output target for formatted output functions. Forprintf
-style functions from modulePrintf
,'b
is typicallyout_channel
; forprintf
-style functions from moduleFormat
,'b
is typicallyFormat.formatter
; forscanf
-style functions from moduleScanf
,'b
is typicallyScanf.Scanning.in_channel
.
Type argument
'b
is also the type of the first argument given to user's defined printing functions for%a
and%t
conversions, and user's defined reading functions for%r
conversion.'c
is the type of the result of the%a
and%t
printing functions, and also the type of the argument transmitted to the first argument ofkprintf
-style functions or to thekscanf
-style functions.
'd
is the type of parameters for thescanf
-style functions.
'e
is the type of the receiver function for thescanf
-style functions.
'f
is the final result type of a formatted input/output function invocation: for theprintf
-style functions, it is typicallyunit
; for thescanf
-style functions, it is typically the result type of the receiver function.
type ('a, 'b, 'c, 'd) format4
= ('a, 'b, 'c, 'c, 'c, 'd) format6
type ('a, 'b, 'c) format
= ('a, 'b, 'c, 'c) format4
val string_of_format : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string
Converts a format string into a string.
val format_of_string : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> ('a, 'b, 'c, 'd, 'e, 'f) format6
format_of_string s
returns a format string read from the string literals
. Note:format_of_string
can not convert a string argument that is not a literal. If you need this functionality, use the more generalScanf
.format_from_string function.
val (^^) : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> ('f, 'b, 'c, 'e, 'g, 'h) format6 -> ('a, 'b, 'c, 'd, 'g, 'h) format6
f1 ^^ f2
catenates format stringsf1
andf2
. The result is a format string that behaves as the concatenation of format stringsf1
andf2
: in case of formatted output, it accepts arguments fromf1
, then arguments fromf2
; in case of formatted input, it returns results fromf1
, then results fromf2
.
Program termination
val exit : int -> 'a
Terminate the process, returning the given status code to the operating system: usually 0 to indicate no errors, and a small positive integer to indicate failure. All open output channels are flushed with
flush_all
. An implicitexit 0
is performed each time a program terminates normally. An implicitexit 2
is performed if the program terminates early because of an uncaught exception.
val at_exit : (unit -> unit) -> unit
Register the given function to be called at program termination time. The functions registered with
at_exit
will be called when the program executesCaml
.exit, or terminates, either normally or because of an uncaught exception. The functions are called in 'last in, first out' order: the function most recently added withat_exit
is called first.
include Base_quickcheck.Export
val quickcheck_generator_unit : Base.unit Base_quickcheck.Generator.t
val quickcheck_generator_bool : Base.bool Base_quickcheck.Generator.t
val quickcheck_generator_char : Base.char Base_quickcheck.Generator.t
val quickcheck_generator_string : Base.string Base_quickcheck.Generator.t
val quickcheck_generator_int : Base.int Base_quickcheck.Generator.t
val quickcheck_generator_int32 : Base.int32 Base_quickcheck.Generator.t
val quickcheck_generator_int64 : Base.int64 Base_quickcheck.Generator.t
val quickcheck_generator_nativeint : Base.nativeint Base_quickcheck.Generator.t
val quickcheck_generator_float : Base.float Base_quickcheck.Generator.t
val quickcheck_observer_unit : Base.unit Base_quickcheck.Observer.t
val quickcheck_observer_bool : Base.bool Base_quickcheck.Observer.t
val quickcheck_observer_char : Base.char Base_quickcheck.Observer.t
val quickcheck_observer_string : Base.string Base_quickcheck.Observer.t
val quickcheck_observer_int : Base.int Base_quickcheck.Observer.t
val quickcheck_observer_int32 : Base.int32 Base_quickcheck.Observer.t
val quickcheck_observer_int64 : Base.int64 Base_quickcheck.Observer.t
val quickcheck_observer_nativeint : Base.nativeint Base_quickcheck.Observer.t
val quickcheck_observer_float : Base.float Base_quickcheck.Observer.t
val quickcheck_shrinker_unit : Base.unit Base_quickcheck.Shrinker.t
val quickcheck_shrinker_bool : Base.bool Base_quickcheck.Shrinker.t
val quickcheck_shrinker_char : Base.char Base_quickcheck.Shrinker.t
val quickcheck_shrinker_string : Base.string Base_quickcheck.Shrinker.t
val quickcheck_shrinker_int : Base.int Base_quickcheck.Shrinker.t
val quickcheck_shrinker_int32 : Base.int32 Base_quickcheck.Shrinker.t
val quickcheck_shrinker_int64 : Base.int64 Base_quickcheck.Shrinker.t
val quickcheck_shrinker_nativeint : Base.nativeint Base_quickcheck.Shrinker.t
val quickcheck_shrinker_float : Base.float Base_quickcheck.Shrinker.t
val quickcheck_generator_option : 'a Base_quickcheck.Generator.t -> 'a Base.option Base_quickcheck.Generator.t
val quickcheck_generator_list : 'a Base_quickcheck.Generator.t -> 'a Base.list Base_quickcheck.Generator.t
val quickcheck_observer_option : 'a Base_quickcheck.Observer.t -> 'a Base.option Base_quickcheck.Observer.t
val quickcheck_observer_list : 'a Base_quickcheck.Observer.t -> 'a Base.list Base_quickcheck.Observer.t
val quickcheck_shrinker_option : 'a Base_quickcheck.Shrinker.t -> 'a Base.option Base_quickcheck.Shrinker.t
val quickcheck_shrinker_list : 'a Base_quickcheck.Shrinker.t -> 'a Base.list Base_quickcheck.Shrinker.t
include Either.Export
type ('f, 's) _either
= ('f, 's) Base__Either.t
=
|
First of 'f
|
Second of 's
include Core_kernel__.Import.From_sexplib
type bigstring
= Sexplib.Conv.bigstring
val sexp_of_bigstring : bigstring -> Ppx_sexp_conv_lib.Sexp.t
val bigstring_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> bigstring
type mat
= Sexplib.Conv.mat
val sexp_of_mat : mat -> Ppx_sexp_conv_lib.Sexp.t
val mat_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> mat
type vec
= Sexplib.Conv.vec
val sexp_of_vec : vec -> Ppx_sexp_conv_lib.Sexp.t
val vec_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> vec
val sexp_of_opaque : _ -> Base.Sexp.t
val opaque_of_sexp : Base.Sexp.t -> _
val sexp_of_pair : ('a -> Base.Sexp.t) -> ('b -> Base.Sexp.t) -> ('a * 'b) -> Base.Sexp.t
val pair_of_sexp : (Base.Sexp.t -> 'a) -> (Base.Sexp.t -> 'b) -> Base.Sexp.t -> 'a * 'b
exception
Of_sexp_error of Core_kernel__.Import.exn * Base.Sexp.t
val of_sexp_error : Core_kernel__.Import.string -> Base.Sexp.t -> _
val of_sexp_error_exn : Core_kernel__.Import.exn -> Base.Sexp.t -> _
include Interfaces
module type Applicative = Core_kernel__.Import.Applicative.S
module type Binable = Core_kernel__.Binable0.S
module type Comparable = Comparable.S
module type Comparable_binable = Comparable.S_binable
module type Floatable = Core_kernel__.Import.Floatable.S
module type Hashable = Hashable.S
module type Hashable_binable = Hashable.S_binable
module type Identifiable = Identifiable.S
module type Infix_comparators = Comparable.Infix
module type Intable = Core_kernel__.Import.Intable.S
module type Monad = Core_kernel__.Import.Monad.S
module type Quickcheckable = Quickcheckable.S
module type Robustly_comparable = Robustly_comparable.S
module type Sexpable = Sexpable.S
module type Stable = Core_kernel__.Stable_module_types.S0
module type Stable_int63able = Core_kernel__.Stable_int63able.S
module type Stable1 = Core_kernel__.Stable_module_types.S1
module type Stable2 = Core_kernel__.Stable_module_types.S2
module type Stable3 = Core_kernel__.Stable_module_types.S3
module type Stable4 = Core_kernel__.Stable_module_types.S4
module type Stringable = Core_kernel__.Import.Stringable.S
include List.Infix
val (@) : 'a Base__List.t -> 'a Base__List.t -> 'a Base__List.t
include Core_kernel__.Never_returns
type never_returns
= Nothing.t
val sexp_of_never_returns : never_returns -> Ppx_sexp_conv_lib.Sexp.t
val never_returns : Nothing.t -> 'a
include Ordering.Export
type _ordering
= Base.Ordering.t
=
|
Less
|
Equal
|
Greater
include Perms.Export
type read
= Perms.Read.t
val bin_shape_read : Bin_prot.Shape.t
val bin_size_read : read Bin_prot.Size.sizer
val bin_write_read : read Bin_prot.Write.writer
val bin_writer_read : read Bin_prot.Type_class.writer
val bin_read_read : read Bin_prot.Read.reader
val __bin_read_read__ : (Core_kernel__.Import.int -> read) Bin_prot.Read.reader
val bin_reader_read : read Bin_prot.Type_class.reader
val bin_read : read Bin_prot.Type_class.t
val compare_read : read -> read -> Core_kernel__.Import.int
val hash_fold_read : Base.Hash.state -> read -> Base.Hash.state
val hash_read : read -> Base.Hash.hash_value
val sexp_of_read : read -> Ppx_sexp_conv_lib.Sexp.t
val read_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> read
type write
= Perms.Write.t
We don't expose
bin_io
forwrite
due to a naming conflict with the functions exported bybin_io
forread_write
. If you wantbin_io
forwrite
, useWrite.t
.
val compare_write : write -> write -> Core_kernel__.Import.int
val hash_fold_write : Base.Hash.state -> write -> Base.Hash.state
val hash_write : write -> Base.Hash.hash_value
val sexp_of_write : write -> Ppx_sexp_conv_lib.Sexp.t
val write_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> write
type immutable
= Perms.Immutable.t
val bin_shape_immutable : Bin_prot.Shape.t
val bin_size_immutable : immutable Bin_prot.Size.sizer
val bin_write_immutable : immutable Bin_prot.Write.writer
val bin_writer_immutable : immutable Bin_prot.Type_class.writer
val bin_read_immutable : immutable Bin_prot.Read.reader
val __bin_read_immutable__ : (Core_kernel__.Import.int -> immutable) Bin_prot.Read.reader
val bin_reader_immutable : immutable Bin_prot.Type_class.reader
val bin_immutable : immutable Bin_prot.Type_class.t
val compare_immutable : immutable -> immutable -> Core_kernel__.Import.int
val hash_fold_immutable : Base.Hash.state -> immutable -> Base.Hash.state
val hash_immutable : immutable -> Base.Hash.hash_value
val sexp_of_immutable : immutable -> Ppx_sexp_conv_lib.Sexp.t
val immutable_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> immutable
type read_write
= Perms.Read_write.t
val bin_shape_read_write : Bin_prot.Shape.t
val bin_size_read_write : read_write Bin_prot.Size.sizer
val bin_write_read_write : read_write Bin_prot.Write.writer
val bin_writer_read_write : read_write Bin_prot.Type_class.writer
val bin_read_read_write : read_write Bin_prot.Read.reader
val __bin_read_read_write__ : (Core_kernel__.Import.int -> read_write) Bin_prot.Read.reader
val bin_reader_read_write : read_write Bin_prot.Type_class.reader
val bin_read_write : read_write Bin_prot.Type_class.t
val compare_read_write : read_write -> read_write -> Core_kernel__.Import.int
val hash_fold_read_write : Base.Hash.state -> read_write -> Base.Hash.state
val hash_read_write : read_write -> Base.Hash.hash_value
val sexp_of_read_write : read_write -> Ppx_sexp_conv_lib.Sexp.t
val read_write_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> read_write
type 'a perms
= 'a Perms.Upper_bound.t
val bin_shape_perms : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_perms : 'a Bin_prot.Size.sizer -> 'a perms Bin_prot.Size.sizer
val bin_write_perms : 'a Bin_prot.Write.writer -> 'a perms Bin_prot.Write.writer
val bin_writer_perms : 'a Bin_prot.Type_class.writer -> 'a perms Bin_prot.Type_class.writer
val bin_read_perms : 'a Bin_prot.Read.reader -> 'a perms Bin_prot.Read.reader
val __bin_read_perms__ : 'a Bin_prot.Read.reader -> (Core_kernel__.Import.int -> 'a perms) Bin_prot.Read.reader
val bin_reader_perms : 'a Bin_prot.Type_class.reader -> 'a perms Bin_prot.Type_class.reader
val bin_perms : 'a Bin_prot.Type_class.t -> 'a perms Bin_prot.Type_class.t
val compare_perms : ('a -> 'a -> Core_kernel__.Import.int) -> 'a perms -> 'a perms -> Core_kernel__.Import.int
val hash_fold_perms : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a perms -> Base.Hash.state
val sexp_of_perms : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a perms -> Ppx_sexp_conv_lib.Sexp.t
val perms_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a perms
include Result.Export
type ('ok, 'err) _result
= ('ok, 'err) Base.Result.t
=
|
Ok of 'ok
|
Error of 'err
val is_ok : (_, _) Base.Result.t -> bool
val is_error : (_, _) Base.Result.t -> bool
type -'a return
= private 'a Core_kernel__.Import.With_return.return
=
{
return : b. 'a -> 'b;
}
exception
Bug of Core_kernel__.Import.string
exception
C_malloc_exn of Core_kernel__.Import.int * Core_kernel__.Import.int
Raised if malloc in C bindings fail (errno * size).
exception
Finally of Core_kernel__.Import.Exn.t * Core_kernel__.Import.Exn.t
val fst3 : ('a * 'b * 'c) -> 'a
val snd3 : ('a * 'b * 'c) -> 'b
val trd3 : ('a * 'b * 'c) -> 'c
val uw : 'a option -> 'a
val phys_same : 'a -> 'b -> bool
phys_same
is likephys_equal
, but with a more general type.phys_same
is useful when dealing with existential types, when one has a packed value and an unpacked value that one wants to check are physically equal. One can't usephys_equal
in such a situation because the types are different.
val (%) : Int.t -> Int.t -> Int.t
val (/%) : Int.t -> Int.t -> Int.t
val (//) : Int.t -> Int.t -> float
val (==>) : bool -> bool -> bool
val bprintf : Base__.Import0.Caml.Buffer.t -> ('a, Base__.Import0.Caml.Buffer.t, unit) Stdlib.format -> 'a
val const : 'a -> 'b -> 'a
val eprintf : ('a, Stdio.Out_channel.t, Base.unit) Base.format -> 'a
val error : ?strict:unit -> string -> 'a -> ('a -> Base.Sexp.t) -> 'b Or_error.t
val error_s : Base.Sexp.t -> 'a Or_error.t
val failwithf : ('a, unit, string, unit -> 'b) Stdlib.format4 -> 'a
val failwithp : ?strict:Core_kernel__.Import.unit -> Stdlib.Lexing.position -> Core_kernel__.Import.string -> 'a -> ('a -> Base.Sexp.t) -> 'b
val failwiths : ?strict:Core_kernel__.Import.unit -> ?here:Stdlib.Lexing.position -> Core_kernel__.Import.string -> 'a -> ('a -> Base.Sexp.t) -> 'b
val force : 'a Base.Lazy.t -> 'a
val fprintf : Stdio.Out_channel.t -> ('a, Stdio.Out_channel.t, Base.unit) Base.format -> 'a
val ident : 'a -> 'a
val invalid_argf : ('a, unit, string, unit -> 'b) Stdlib.format4 -> 'a
val ifprintf : 'a -> ('b, 'a, 'c, unit) Stdlib.format4 -> 'b
val is_none : 'a Option.t -> bool
val is_some : 'a Option.t -> bool
val ksprintf : (string -> 'a) -> ('b, unit, string, 'a) Stdlib.format4 -> 'b
val ok_exn : 'a Or_error.t -> 'a
val phys_equal : 'a -> 'a -> bool
val phys_same : 'a -> 'b -> bool
val print_s : ?mach:Base.unit -> Base.Sexp.t -> Base.unit
val printf : ('a, Stdio.Out_channel.t, Base.unit) Base.format -> 'a
val protect : f:(unit -> 'a) -> finally:(unit -> unit) -> 'a
val protectx : f:('a -> 'b) -> 'a -> finally:('a -> unit) -> 'b
val raise_s : Base.Sexp.t -> 'a
val round : ?dir:[ `Down | `Nearest | `Up | `Zero ] -> Float.t -> Float.t
val (**.) : Base__Float.t -> Base__Float.t -> Base__Float.t
val sprintf : ('a, unit, string) Stdlib.format -> 'a
val stage : 'a -> 'a Core_kernel__.Import.Staged.t
val unstage : 'a Core_kernel__.Import.Staged.t -> 'a
val with_return : ('a Core_kernel__.Import.With_return.return -> 'a) -> 'a
val with_return_option : ('a Core_kernel__.Import.With_return.return -> unit) -> 'a option
include Typerep_lib.Std_internal
module rec Typerep = Typerep_lib.Std_internal.Typerep
runtime type representations
val typerep_of_int : int Typerep.t
val typerep_of_int32 : int32 Typerep.t
val typerep_of_int64 : int64 Typerep.t
val typerep_of_nativeint : nativeint Typerep.t
val typerep_of_char : char Typerep.t
val typerep_of_float : float Typerep.t
val typerep_of_string : string Typerep.t
val typerep_of_bytes : bytes Typerep.t
val typerep_of_bool : bool Typerep.t
val typerep_of_unit : unit Typerep.t
val value_tuple0 : tuple0
val typerep_of_option : 'a Typerep.t -> 'a option Typerep.t
val typerep_of_list : 'a Typerep.t -> 'a list Typerep.t
val typerep_of_array : 'a Typerep.t -> 'a array Typerep.t
val typerep_of_lazy_t : 'a Typerep.t -> 'a lazy_t Typerep.t
val typerep_of_ref : 'a Typerep.t -> 'a Stdlib.ref Typerep.t
val typerep_of_function : 'a Typerep.t -> 'b Typerep.t -> ('a -> 'b) Typerep.t
val typerep_of_tuple0 : tuple0 Typerep.t
val typerep_of_tuple2 : 'a Typerep.t -> 'b Typerep.t -> ('a * 'b) Typerep.t
val typerep_of_tuple3 : 'a Typerep.t -> 'b Typerep.t -> 'c Typerep.t -> ('a * 'b * 'c) Typerep.t
val typerep_of_tuple4 : 'a Typerep.t -> 'b Typerep.t -> 'c Typerep.t -> 'd Typerep.t -> ('a * 'b * 'c * 'd) Typerep.t
val typerep_of_tuple5 : 'a Typerep.t -> 'b Typerep.t -> 'c Typerep.t -> 'd Typerep.t -> 'e Typerep.t -> ('a * 'b * 'c * 'd * 'e) Typerep.t
val typename_of_int : int Typerep_lib.Typename.t
val typename_of_int32 : int32 Typerep_lib.Typename.t
val typename_of_int64 : int64 Typerep_lib.Typename.t
val typename_of_nativeint : nativeint Typerep_lib.Typename.t
val typename_of_char : char Typerep_lib.Typename.t
val typename_of_float : float Typerep_lib.Typename.t
val typename_of_string : string Typerep_lib.Typename.t
val typename_of_bytes : bytes Typerep_lib.Typename.t
val typename_of_bool : bool Typerep_lib.Typename.t
val typename_of_unit : unit Typerep_lib.Typename.t
val typename_of_option : 'a Typerep_lib.Typename.t -> 'a option Typerep_lib.Typename.t
val typename_of_list : 'a Typerep_lib.Typename.t -> 'a list Typerep_lib.Typename.t
val typename_of_array : 'a Typerep_lib.Typename.t -> 'a array Typerep_lib.Typename.t
val typename_of_lazy_t : 'a Typerep_lib.Typename.t -> 'a lazy_t Typerep_lib.Typename.t
val typename_of_ref : 'a Typerep_lib.Typename.t -> 'a Stdlib.ref Typerep_lib.Typename.t
val typename_of_function : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> ('a -> 'b) Typerep_lib.Typename.t
val typename_of_tuple0 : tuple0 Typerep_lib.Typename.t
val typename_of_tuple2 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> ('a * 'b) Typerep_lib.Typename.t
val typename_of_tuple3 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> 'c Typerep_lib.Typename.t -> ('a * 'b * 'c) Typerep_lib.Typename.t
val typename_of_tuple4 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> 'c Typerep_lib.Typename.t -> 'd Typerep_lib.Typename.t -> ('a * 'b * 'c * 'd) Typerep_lib.Typename.t
val typename_of_tuple5 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> 'c Typerep_lib.Typename.t -> 'd Typerep_lib.Typename.t -> 'e Typerep_lib.Typename.t -> ('a * 'b * 'c * 'd * 'e) Typerep_lib.Typename.t
include sig ... end with type 'a array := 'a Core_kernel__.Import.array with type bool := Core_kernel__.Import.bool with type char := Core_kernel__.Import.char with type float := Core_kernel__.Import.float with type int := Core_kernel__.Import.int with type int32 := Core_kernel__.Import.int32 with type int64 := Core_kernel__.Import.int64 with type 'a list := 'a Core_kernel__.Import.list with type nativeint := Core_kernel__.Import.nativeint with type 'a option := 'a Core_kernel__.Import.option with type string := Core_kernel__.Import.string with type bytes := Core_kernel__.Import.bytes with type 'a lazy_t := 'a lazy_t with type 'a ref := 'a ref with type unit := Core_kernel__.Import.unit
val bin_shape_array : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_array : 'a Bin_prot.Size.sizer -> 'a array Bin_prot.Size.sizer
val bin_write_array : 'a Bin_prot.Write.writer -> 'a array Bin_prot.Write.writer
val bin_writer_array : 'a Bin_prot.Type_class.writer -> 'a array Bin_prot.Type_class.writer
val bin_read_array : 'a Bin_prot.Read.reader -> 'a array Bin_prot.Read.reader
val __bin_read_array__ : 'a Bin_prot.Read.reader -> (Core_kernel__.Import.int -> 'a array) Bin_prot.Read.reader
val bin_reader_array : 'a Bin_prot.Type_class.reader -> 'a array Bin_prot.Type_class.reader
val bin_array : 'a Bin_prot.Type_class.t -> 'a array Bin_prot.Type_class.t
val compare_array : ('a -> 'a -> Core_kernel__.Import.int) -> 'a array -> 'a array -> Core_kernel__.Import.int
val equal_array : ('a -> 'a -> Core_kernel__.Import.bool) -> 'a array -> 'a array -> Core_kernel__.Import.bool
val sexp_of_array : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a array -> Ppx_sexp_conv_lib.Sexp.t
val array_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a array
val typerep_of_array : 'a Typerep_lib.Std.Typerep.t -> 'a array Typerep_lib.Std.Typerep.t
val typename_of_array : 'a Typerep_lib.Std.Typename.t -> 'a array Typerep_lib.Std.Typename.t
val bin_shape_bool : Bin_prot.Shape.t
val bin_size_bool : bool Bin_prot.Size.sizer
val bin_write_bool : bool Bin_prot.Write.writer
val bin_writer_bool : bool Bin_prot.Type_class.writer
val bin_read_bool : bool Bin_prot.Read.reader
val __bin_read_bool__ : (Core_kernel__.Import.int -> bool) Bin_prot.Read.reader
val bin_reader_bool : bool Bin_prot.Type_class.reader
val bin_bool : bool Bin_prot.Type_class.t
val compare_bool : bool -> bool -> Core_kernel__.Import.int
val equal_bool : bool -> bool -> bool
val hash_fold_bool : Base.Hash.state -> bool -> Base.Hash.state
val hash_bool : bool -> Base.Hash.hash_value
val sexp_of_bool : bool -> Ppx_sexp_conv_lib.Sexp.t
val bool_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> bool
val typerep_of_bool : bool Typerep_lib.Std.Typerep.t
val typename_of_bool : bool Typerep_lib.Std.Typename.t
val bin_shape_char : Bin_prot.Shape.t
val bin_size_char : char Bin_prot.Size.sizer
val bin_write_char : char Bin_prot.Write.writer
val bin_writer_char : char Bin_prot.Type_class.writer
val bin_read_char : char Bin_prot.Read.reader
val __bin_read_char__ : (Core_kernel__.Import.int -> char) Bin_prot.Read.reader
val bin_reader_char : char Bin_prot.Type_class.reader
val bin_char : char Bin_prot.Type_class.t
val compare_char : char -> char -> Core_kernel__.Import.int
val equal_char : char -> char -> bool
val hash_fold_char : Base.Hash.state -> char -> Base.Hash.state
val hash_char : char -> Base.Hash.hash_value
val sexp_of_char : char -> Ppx_sexp_conv_lib.Sexp.t
val char_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> char
val typerep_of_char : char Typerep_lib.Std.Typerep.t
val typename_of_char : char Typerep_lib.Std.Typename.t
val bin_shape_float : Bin_prot.Shape.t
val bin_size_float : float Bin_prot.Size.sizer
val bin_write_float : float Bin_prot.Write.writer
val bin_writer_float : float Bin_prot.Type_class.writer
val bin_read_float : float Bin_prot.Read.reader
val __bin_read_float__ : (Core_kernel__.Import.int -> float) Bin_prot.Read.reader
val bin_reader_float : float Bin_prot.Type_class.reader
val bin_float : float Bin_prot.Type_class.t
val compare_float : float -> float -> Core_kernel__.Import.int
val equal_float : float -> float -> bool
val hash_fold_float : Base.Hash.state -> float -> Base.Hash.state
val hash_float : float -> Base.Hash.hash_value
val sexp_of_float : float -> Ppx_sexp_conv_lib.Sexp.t
val float_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> float
val typerep_of_float : float Typerep_lib.Std.Typerep.t
val typename_of_float : float Typerep_lib.Std.Typename.t
val bin_shape_int : Bin_prot.Shape.t
val bin_size_int : int Bin_prot.Size.sizer
val bin_write_int : int Bin_prot.Write.writer
val bin_writer_int : int Bin_prot.Type_class.writer
val bin_read_int : int Bin_prot.Read.reader
val __bin_read_int__ : (int -> int) Bin_prot.Read.reader
val bin_reader_int : int Bin_prot.Type_class.reader
val bin_int : int Bin_prot.Type_class.t
val compare_int : int -> int -> int
val equal_int : int -> int -> bool
val hash_fold_int : Base.Hash.state -> int -> Base.Hash.state
val hash_int : int -> Base.Hash.hash_value
val sexp_of_int : int -> Ppx_sexp_conv_lib.Sexp.t
val int_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> int
val typerep_of_int : int Typerep_lib.Std.Typerep.t
val typename_of_int : int Typerep_lib.Std.Typename.t
val bin_shape_int32 : Bin_prot.Shape.t
val bin_size_int32 : int32 Bin_prot.Size.sizer
val bin_write_int32 : int32 Bin_prot.Write.writer
val bin_writer_int32 : int32 Bin_prot.Type_class.writer
val bin_read_int32 : int32 Bin_prot.Read.reader
val __bin_read_int32__ : (int -> int32) Bin_prot.Read.reader
val bin_reader_int32 : int32 Bin_prot.Type_class.reader
val bin_int32 : int32 Bin_prot.Type_class.t
val compare_int32 : int32 -> int32 -> int
val equal_int32 : int32 -> int32 -> bool
val hash_fold_int32 : Base.Hash.state -> int32 -> Base.Hash.state
val hash_int32 : int32 -> Base.Hash.hash_value
val sexp_of_int32 : int32 -> Ppx_sexp_conv_lib.Sexp.t
val int32_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> int32
val typerep_of_int32 : int32 Typerep_lib.Std.Typerep.t
val typename_of_int32 : int32 Typerep_lib.Std.Typename.t
val bin_shape_int64 : Bin_prot.Shape.t
val bin_size_int64 : int64 Bin_prot.Size.sizer
val bin_write_int64 : int64 Bin_prot.Write.writer
val bin_writer_int64 : int64 Bin_prot.Type_class.writer
val bin_read_int64 : int64 Bin_prot.Read.reader
val __bin_read_int64__ : (int -> int64) Bin_prot.Read.reader
val bin_reader_int64 : int64 Bin_prot.Type_class.reader
val bin_int64 : int64 Bin_prot.Type_class.t
val compare_int64 : int64 -> int64 -> int
val equal_int64 : int64 -> int64 -> bool
val hash_fold_int64 : Base.Hash.state -> int64 -> Base.Hash.state
val hash_int64 : int64 -> Base.Hash.hash_value
val sexp_of_int64 : int64 -> Ppx_sexp_conv_lib.Sexp.t
val int64_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> int64
val typerep_of_int64 : int64 Typerep_lib.Std.Typerep.t
val typename_of_int64 : int64 Typerep_lib.Std.Typename.t
val bin_shape_lazy_t : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_lazy_t : 'a Bin_prot.Size.sizer -> 'a lazy_t Bin_prot.Size.sizer
val bin_write_lazy_t : 'a Bin_prot.Write.writer -> 'a lazy_t Bin_prot.Write.writer
val bin_writer_lazy_t : 'a Bin_prot.Type_class.writer -> 'a lazy_t Bin_prot.Type_class.writer
val bin_read_lazy_t : 'a Bin_prot.Read.reader -> 'a lazy_t Bin_prot.Read.reader
val __bin_read_lazy_t__ : 'a Bin_prot.Read.reader -> (int -> 'a lazy_t) Bin_prot.Read.reader
val bin_reader_lazy_t : 'a Bin_prot.Type_class.reader -> 'a lazy_t Bin_prot.Type_class.reader
val bin_lazy_t : 'a Bin_prot.Type_class.t -> 'a lazy_t Bin_prot.Type_class.t
val compare_lazy_t : ('a -> 'a -> int) -> 'a lazy_t -> 'a lazy_t -> int
val hash_fold_lazy_t : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a lazy_t -> Base.Hash.state
val sexp_of_lazy_t : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a lazy_t -> Ppx_sexp_conv_lib.Sexp.t
val lazy_t_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a lazy_t
val typerep_of_lazy_t : 'a Typerep_lib.Std.Typerep.t -> 'a lazy_t Typerep_lib.Std.Typerep.t
val typename_of_lazy_t : 'a Typerep_lib.Std.Typename.t -> 'a lazy_t Typerep_lib.Std.Typename.t
val bin_shape_list : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_list : 'a Bin_prot.Size.sizer -> 'a list Bin_prot.Size.sizer
val bin_write_list : 'a Bin_prot.Write.writer -> 'a list Bin_prot.Write.writer
val bin_writer_list : 'a Bin_prot.Type_class.writer -> 'a list Bin_prot.Type_class.writer
val bin_read_list : 'a Bin_prot.Read.reader -> 'a list Bin_prot.Read.reader
val __bin_read_list__ : 'a Bin_prot.Read.reader -> (int -> 'a list) Bin_prot.Read.reader
val bin_reader_list : 'a Bin_prot.Type_class.reader -> 'a list Bin_prot.Type_class.reader
val bin_list : 'a Bin_prot.Type_class.t -> 'a list Bin_prot.Type_class.t
val compare_list : ('a -> 'a -> int) -> 'a list -> 'a list -> int
val equal_list : ('a -> 'a -> bool) -> 'a list -> 'a list -> bool
val hash_fold_list : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a list -> Base.Hash.state
val sexp_of_list : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a list -> Ppx_sexp_conv_lib.Sexp.t
val list_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a list
val typerep_of_list : 'a Typerep_lib.Std.Typerep.t -> 'a list Typerep_lib.Std.Typerep.t
val typename_of_list : 'a Typerep_lib.Std.Typename.t -> 'a list Typerep_lib.Std.Typename.t
val bin_shape_nativeint : Bin_prot.Shape.t
val bin_size_nativeint : nativeint Bin_prot.Size.sizer
val bin_write_nativeint : nativeint Bin_prot.Write.writer
val bin_writer_nativeint : nativeint Bin_prot.Type_class.writer
val bin_read_nativeint : nativeint Bin_prot.Read.reader
val __bin_read_nativeint__ : (int -> nativeint) Bin_prot.Read.reader
val bin_reader_nativeint : nativeint Bin_prot.Type_class.reader
val bin_nativeint : nativeint Bin_prot.Type_class.t
val compare_nativeint : nativeint -> nativeint -> int
val equal_nativeint : nativeint -> nativeint -> bool
val hash_fold_nativeint : Base.Hash.state -> nativeint -> Base.Hash.state
val hash_nativeint : nativeint -> Base.Hash.hash_value
val sexp_of_nativeint : nativeint -> Ppx_sexp_conv_lib.Sexp.t
val nativeint_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> nativeint
val typerep_of_nativeint : nativeint Typerep_lib.Std.Typerep.t
val typename_of_nativeint : nativeint Typerep_lib.Std.Typename.t
val bin_shape_option : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_option : 'a Bin_prot.Size.sizer -> 'a option Bin_prot.Size.sizer
val bin_write_option : 'a Bin_prot.Write.writer -> 'a option Bin_prot.Write.writer
val bin_writer_option : 'a Bin_prot.Type_class.writer -> 'a option Bin_prot.Type_class.writer
val bin_read_option : 'a Bin_prot.Read.reader -> 'a option Bin_prot.Read.reader
val __bin_read_option__ : 'a Bin_prot.Read.reader -> (int -> 'a option) Bin_prot.Read.reader
val bin_reader_option : 'a Bin_prot.Type_class.reader -> 'a option Bin_prot.Type_class.reader
val bin_option : 'a Bin_prot.Type_class.t -> 'a option Bin_prot.Type_class.t
val compare_option : ('a -> 'a -> int) -> 'a option -> 'a option -> int
val equal_option : ('a -> 'a -> bool) -> 'a option -> 'a option -> bool
val hash_fold_option : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a option -> Base.Hash.state
val sexp_of_option : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a option -> Ppx_sexp_conv_lib.Sexp.t
val option_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a option
val typerep_of_option : 'a Typerep_lib.Std.Typerep.t -> 'a option Typerep_lib.Std.Typerep.t
val typename_of_option : 'a Typerep_lib.Std.Typename.t -> 'a option Typerep_lib.Std.Typename.t
val bin_shape_string : Bin_prot.Shape.t
val bin_size_string : string Bin_prot.Size.sizer
val bin_write_string : string Bin_prot.Write.writer
val bin_writer_string : string Bin_prot.Type_class.writer
val bin_read_string : string Bin_prot.Read.reader
val __bin_read_string__ : (int -> string) Bin_prot.Read.reader
val bin_reader_string : string Bin_prot.Type_class.reader
val bin_string : string Bin_prot.Type_class.t
val compare_string : string -> string -> int
val equal_string : string -> string -> bool
val hash_fold_string : Base.Hash.state -> string -> Base.Hash.state
val hash_string : string -> Base.Hash.hash_value
val sexp_of_string : string -> Ppx_sexp_conv_lib.Sexp.t
val string_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> string
val typerep_of_string : string Typerep_lib.Std.Typerep.t
val typename_of_string : string Typerep_lib.Std.Typename.t
val bin_shape_bytes : Bin_prot.Shape.t
val bin_size_bytes : bytes Bin_prot.Size.sizer
val bin_write_bytes : bytes Bin_prot.Write.writer
val bin_writer_bytes : bytes Bin_prot.Type_class.writer
val bin_read_bytes : bytes Bin_prot.Read.reader
val __bin_read_bytes__ : (int -> bytes) Bin_prot.Read.reader
val bin_reader_bytes : bytes Bin_prot.Type_class.reader
val bin_bytes : bytes Bin_prot.Type_class.t
val compare_bytes : bytes -> bytes -> int
val equal_bytes : bytes -> bytes -> bool
val sexp_of_bytes : bytes -> Ppx_sexp_conv_lib.Sexp.t
val bytes_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> bytes
val typerep_of_bytes : bytes Typerep_lib.Std.Typerep.t
val typename_of_bytes : bytes Typerep_lib.Std.Typename.t
val bin_shape_ref : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_ref : 'a Bin_prot.Size.sizer -> 'a ref Bin_prot.Size.sizer
val bin_write_ref : 'a Bin_prot.Write.writer -> 'a ref Bin_prot.Write.writer
val bin_writer_ref : 'a Bin_prot.Type_class.writer -> 'a ref Bin_prot.Type_class.writer
val bin_read_ref : 'a Bin_prot.Read.reader -> 'a ref Bin_prot.Read.reader
val __bin_read_ref__ : 'a Bin_prot.Read.reader -> (int -> 'a ref) Bin_prot.Read.reader
val bin_reader_ref : 'a Bin_prot.Type_class.reader -> 'a ref Bin_prot.Type_class.reader
val bin_ref : 'a Bin_prot.Type_class.t -> 'a ref Bin_prot.Type_class.t
val compare_ref : ('a -> 'a -> int) -> 'a ref -> 'a ref -> int
val equal_ref : ('a -> 'a -> bool) -> 'a ref -> 'a ref -> bool
val sexp_of_ref : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a ref -> Ppx_sexp_conv_lib.Sexp.t
val ref_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a ref
val typerep_of_ref : 'a Typerep_lib.Std.Typerep.t -> 'a ref Typerep_lib.Std.Typerep.t
val typename_of_ref : 'a Typerep_lib.Std.Typename.t -> 'a ref Typerep_lib.Std.Typename.t
val bin_shape_unit : Bin_prot.Shape.t
val bin_size_unit : unit Bin_prot.Size.sizer
val bin_write_unit : unit Bin_prot.Write.writer
val bin_writer_unit : unit Bin_prot.Type_class.writer
val bin_read_unit : unit Bin_prot.Read.reader
val __bin_read_unit__ : (int -> unit) Bin_prot.Read.reader
val bin_reader_unit : unit Bin_prot.Type_class.reader
val bin_unit : unit Bin_prot.Type_class.t
val compare_unit : unit -> unit -> int
val equal_unit : unit -> unit -> bool
val hash_fold_unit : Base.Hash.state -> unit -> Base.Hash.state
val hash_unit : unit -> Base.Hash.hash_value
val sexp_of_unit : unit -> Ppx_sexp_conv_lib.Sexp.t
val unit_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> unit
val typerep_of_unit : unit Typerep_lib.Std.Typerep.t
val typename_of_unit : unit Typerep_lib.Std.Typename.t
val bin_shape_float_array : Bin_prot.Shape.t
val bin_size_float_array : float_array Bin_prot.Size.sizer
val bin_write_float_array : float_array Bin_prot.Write.writer
val bin_writer_float_array : float_array Bin_prot.Type_class.writer
val bin_read_float_array : float_array Bin_prot.Read.reader
val __bin_read_float_array__ : (int -> float_array) Bin_prot.Read.reader
val bin_reader_float_array : float_array Bin_prot.Type_class.reader
val bin_float_array : float_array Bin_prot.Type_class.t
val compare_float_array : float_array -> float_array -> int
val sexp_of_float_array : float_array -> Ppx_sexp_conv_lib.Sexp.t
val float_array_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> float_array
val typerep_of_float_array : float_array Typerep_lib.Std.Typerep.t
val typename_of_float_array : float_array Typerep_lib.Std.Typename.t
val sexp_of_exn : Core_kernel__.Import.Exn.t -> Base.Sexp.t
type 'a sexp_array
= 'a Core_kernel__.Import.array
val bin_shape_sexp_array : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_sexp_array : a. 'a Bin_prot.Size.sizer -> 'a sexp_array Bin_prot.Size.sizer
val bin_write_sexp_array : a. 'a Bin_prot.Write.writer -> 'a sexp_array Bin_prot.Write.writer
val bin_writer_sexp_array : 'a Bin_prot.Type_class.writer -> 'a sexp_array Bin_prot.Type_class.writer
val __bin_read_sexp_array__ : a. 'a Bin_prot.Read.reader -> (Core_kernel__.Import.int -> 'a sexp_array) Bin_prot.Read.reader
val bin_read_sexp_array : a. 'a Bin_prot.Read.reader -> 'a sexp_array Bin_prot.Read.reader
val bin_reader_sexp_array : 'a Bin_prot.Type_class.reader -> 'a sexp_array Bin_prot.Type_class.reader
val bin_sexp_array : 'a Bin_prot.Type_class.t -> 'a sexp_array Bin_prot.Type_class.t
val compare_sexp_array : a. ('a -> 'a -> Core_kernel__.Import.int) -> 'a sexp_array -> 'a sexp_array -> Core_kernel__.Import.int
module Typename_of_sexp_array = Core_kernel__.Std_internal.Typename_of_sexp_array
val typename_of_sexp_array : 'a Typerep_lib.Typename.t -> 'a sexp_array Typerep_lib.Typename.t
val typerep_of_sexp_array : a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_array Typerep_lib.Std.Typerep.t
type sexp_bool
= Core_kernel__.Import.bool
val bin_shape_sexp_bool : Bin_prot.Shape.t
val bin_size_sexp_bool : sexp_bool Bin_prot.Size.sizer
val bin_write_sexp_bool : sexp_bool Bin_prot.Write.writer
val bin_writer_sexp_bool : sexp_bool Bin_prot.Type_class.writer
val __bin_read_sexp_bool__ : (Core_kernel__.Import.int -> sexp_bool) Bin_prot.Read.reader
val bin_read_sexp_bool : sexp_bool Bin_prot.Read.reader
val bin_reader_sexp_bool : sexp_bool Bin_prot.Type_class.reader
val bin_sexp_bool : sexp_bool Bin_prot.Type_class.t
val compare_sexp_bool : sexp_bool -> sexp_bool -> Core_kernel__.Import.int
val hash_fold_sexp_bool : Base.Hash.state -> sexp_bool -> Base.Hash.state
val hash_sexp_bool : sexp_bool -> Base.Hash.hash_value
module Typename_of_sexp_bool = Core_kernel__.Std_internal.Typename_of_sexp_bool
val typename_of_sexp_bool : sexp_bool Typerep_lib.Typename.t
val typerep_of_sexp_bool : sexp_bool Typerep_lib.Std.Typerep.t
type 'a sexp_list
= 'a Core_kernel__.Import.list
val bin_shape_sexp_list : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_sexp_list : a. 'a Bin_prot.Size.sizer -> 'a sexp_list Bin_prot.Size.sizer
val bin_write_sexp_list : a. 'a Bin_prot.Write.writer -> 'a sexp_list Bin_prot.Write.writer
val bin_writer_sexp_list : 'a Bin_prot.Type_class.writer -> 'a sexp_list Bin_prot.Type_class.writer
val __bin_read_sexp_list__ : a. 'a Bin_prot.Read.reader -> (Core_kernel__.Import.int -> 'a sexp_list) Bin_prot.Read.reader
val bin_read_sexp_list : a. 'a Bin_prot.Read.reader -> 'a sexp_list Bin_prot.Read.reader
val bin_reader_sexp_list : 'a Bin_prot.Type_class.reader -> 'a sexp_list Bin_prot.Type_class.reader
val bin_sexp_list : 'a Bin_prot.Type_class.t -> 'a sexp_list Bin_prot.Type_class.t
val compare_sexp_list : a. ('a -> 'a -> Core_kernel__.Import.int) -> 'a sexp_list -> 'a sexp_list -> Core_kernel__.Import.int
val hash_fold_sexp_list : a. (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a sexp_list -> Base.Hash.state
module Typename_of_sexp_list = Core_kernel__.Std_internal.Typename_of_sexp_list
val typename_of_sexp_list : 'a Typerep_lib.Typename.t -> 'a sexp_list Typerep_lib.Typename.t
val typerep_of_sexp_list : a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_list Typerep_lib.Std.Typerep.t
type 'a sexp_option
= 'a Core_kernel__.Import.option
val bin_shape_sexp_option : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_sexp_option : a. 'a Bin_prot.Size.sizer -> 'a sexp_option Bin_prot.Size.sizer
val bin_write_sexp_option : a. 'a Bin_prot.Write.writer -> 'a sexp_option Bin_prot.Write.writer
val bin_writer_sexp_option : 'a Bin_prot.Type_class.writer -> 'a sexp_option Bin_prot.Type_class.writer
val __bin_read_sexp_option__ : a. 'a Bin_prot.Read.reader -> (Core_kernel__.Import.int -> 'a sexp_option) Bin_prot.Read.reader
val bin_read_sexp_option : a. 'a Bin_prot.Read.reader -> 'a sexp_option Bin_prot.Read.reader
val bin_reader_sexp_option : 'a Bin_prot.Type_class.reader -> 'a sexp_option Bin_prot.Type_class.reader
val bin_sexp_option : 'a Bin_prot.Type_class.t -> 'a sexp_option Bin_prot.Type_class.t
val compare_sexp_option : a. ('a -> 'a -> Core_kernel__.Import.int) -> 'a sexp_option -> 'a sexp_option -> Core_kernel__.Import.int
val hash_fold_sexp_option : a. (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a sexp_option -> Base.Hash.state
module Typename_of_sexp_option = Core_kernel__.Std_internal.Typename_of_sexp_option
val typename_of_sexp_option : 'a Typerep_lib.Typename.t -> 'a sexp_option Typerep_lib.Typename.t
val typerep_of_sexp_option : a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_option Typerep_lib.Std.Typerep.t
val bin_shape_sexp_opaque : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_sexp_opaque : a. 'a Bin_prot.Size.sizer -> 'a sexp_opaque Bin_prot.Size.sizer
val bin_write_sexp_opaque : a. 'a Bin_prot.Write.writer -> 'a sexp_opaque Bin_prot.Write.writer
val bin_writer_sexp_opaque : 'a Bin_prot.Type_class.writer -> 'a sexp_opaque Bin_prot.Type_class.writer
val __bin_read_sexp_opaque__ : a. 'a Bin_prot.Read.reader -> (Core_kernel__.Import.int -> 'a sexp_opaque) Bin_prot.Read.reader
val bin_read_sexp_opaque : a. 'a Bin_prot.Read.reader -> 'a sexp_opaque Bin_prot.Read.reader
val bin_reader_sexp_opaque : 'a Bin_prot.Type_class.reader -> 'a sexp_opaque Bin_prot.Type_class.reader
val bin_sexp_opaque : 'a Bin_prot.Type_class.t -> 'a sexp_opaque Bin_prot.Type_class.t
val compare_sexp_opaque : a. ('a -> 'a -> Core_kernel__.Import.int) -> 'a sexp_opaque -> 'a sexp_opaque -> Core_kernel__.Import.int
val hash_fold_sexp_opaque : a. (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a sexp_opaque -> Base.Hash.state
module Typename_of_sexp_opaque = Core_kernel__.Std_internal.Typename_of_sexp_opaque
val typename_of_sexp_opaque : 'a Typerep_lib.Typename.t -> 'a sexp_opaque Typerep_lib.Typename.t
val typerep_of_sexp_opaque : a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_opaque Typerep_lib.Std.Typerep.t
include Core_kernel__.Import.Not_found
exception
Not_found
exception
Not_found_s of Sexplib0.Sexp.t
Std
Std
defines modules exposed by Core_kernel
that are overridden by Core
.
Modules imported from Base without modification
module Caml = Caml
Modules that extend Base
module Container_intf : sig ... end
This module extends
Base.Container
.
module Int_replace_polymorphic_compare : sig ... end
Just a wrapper around
Base.Not_exposed_properly.Import.Int_replace_polymorphic_compare
Modules added by Core_kernel
module Bigstring : sig ... end
String type based on
Bigarray
, for use in I/O and C-bindings.
module Command : sig ... end
module Core_kernel_stable = Core_kernel__.Stable
module Date : sig ... end
Date module.
module Filename : sig ... end
module Map_intf : sig ... end
This module defines interfaces used in
Map
. See those docs for a description of the design.
module Digest = Md5
module Optional_syntax_intf : sig ... end
module Set_intf : sig ... end
This module defines interfaces used in
Set
. See theMap
docs for a description of the design.
module Time = Core_kernel__.Time_float
module Time_ns : sig ... end
Time module.
module Timing_wheel_ns_intf : sig ... end
A specialized priority queue for a set of time-based alarms.
module Version_util : sig ... end
This module gives access to the same version/build information returned by
Command
-based executables when called with the-version
or-build-info
flags by$0 version (-build-info | -version)
or$0 (-build-info | -version)
.
module Core_kernel_private = Std.Core_kernel_private
To be used in implementing Core, but not by end users.