Module Core_kernel.Blang

Boolean expressions.

Usage

For example, imagine writing a config file for an application that filters a stream of integers. Your goal is to keep only those integers that are multiples of either -3 or 5. Using Blang for this task, the code might look like:

module Property = struct
  type t =
    | Multiple_of of int
    | Positive
    | Negative
  [@@deriving sexp]

  let eval t num =
    match t with
    | Multiple_of n -> num % n = 0
    | Positive      -> num > 0
    | Negative      -> num < 0
end

type config = {
  keep : Property.t Blang.t;
} [@@deriving sexp]

let config = {
  keep = Blang.of_string "(or (and negative (multiple_of 3)) \
                         \    (and positive (multiple_of 5)))";
}

let keep config num : bool =
  Blang.eval config.keep (fun p -> Property.eval p num)

Note how positive and negative and multiple_of become operators in a small, newly-defined boolean expression language that allows you to write statements like (and negative (multiple_of 3)).

Blang sexp syntax

The blang sexp syntax is almost exactly the derived one, except that:

1. Base properties are not marked explicitly. Thus, if your base property type has elements FOO, BAR, etc., then you could write the following Blang s-expressions:

        FOO
        (and FOO BAR)
        (if FOO BAR BAZ)

and so on. Note that this gets in the way of using the blang "keywords" in your value language.

2. And and Or take a variable number of arguments, so that one can (and probably should) write

(and FOO BAR BAZ QUX)

instead of

(and FOO (and BAR (and BAZ QUX)))
type 'a t = private
| True
| False
| And of 'a t * 'a t
| Or of 'a t * 'a t
| Not of 'a t
| If of 'a t * 'a t * 'a t
| Base of 'a

Note that the sexps are not directly inferred from the type below -- there are lots of fancy shortcuts. Also, the sexps for 'a must not look anything like blang sexps. Otherwise t_of_sexp will fail.

include Bin_prot.Binable.S1 with type 'a t := 'a t
type 'a t
val bin_shape_t : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_t : ('a'a t) Bin_prot.Size.sizer1
val bin_write_t : ('a'a t) Bin_prot.Write.writer1
val bin_read_t : ('a'a t) Bin_prot.Read.reader1
val __bin_read_t__ : ('a, int -> 'a t) Bin_prot.Read.reader1
val bin_writer_t : ('a'a t) Bin_prot.Type_class.S1.writer
val bin_reader_t : ('a'a t) Bin_prot.Type_class.S1.reader
val bin_t : ('a'a t) Bin_prot.Type_class.S1.t
val compare : ('a -> 'a -> Core_kernel__.Import.int) -> 'a t -> 'a t -> Core_kernel__.Import.int
val hash_fold_t : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a t -> Base.Hash.state
include Ppx_sexp_conv_lib.Sexpable.S1 with type 'a t := 'a t
type 'a t
val t_of_sexp : (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a t
val sexp_of_t : ('a -> Sexplib0.Sexp.t) -> 'a t -> Sexplib0.Sexp.t

Smart constructors that simplify away constants whenever possible

module type Constructors = sig ... end
include Constructors
val base : 'a -> 'a t
val true_ : _ t
val false_ : _ t
val constant : Core_kernel__.Import.bool -> _ t

function true -> true_ | false -> false_

val not_ : 'a t -> 'a t
val and_ : 'a t Core_kernel__.Import.list -> 'a t

n-ary And

val or_ : 'a t Core_kernel__.Import.list -> 'a t

n-ary Or

val if_ : 'a t -> 'a t -> 'a t -> 'a t

if_ if then else

module O : sig ... end
val constant_value : 'a t -> Core_kernel__.Import.bool Core_kernel__.Import.option

constant_value t = Some b iff t = constant b

val gather_conjuncts : 'a t -> 'a t Core_kernel__.Import.list

gather_conjuncts t gathers up all toplevel conjuncts in t. For example,

  • gather_conjuncts (and_ ts) = ts
  • gather_conjuncts (And (t1, t2)) = gather_conjuncts t1 @ gather_conjuncts t2
  • gather_conjuncts True = []
  • gather_conjuncts t = [t] when t matches neither And (_, _) nor True
val gather_disjuncts : 'a t -> 'a t Core_kernel__.Import.list

gather_disjuncts t gathers up all toplevel disjuncts in t. For example,

  • gather_disjuncts (or_ ts) = ts
  • gather_disjuncts (Or (t1, t2)) = gather_disjuncts t1 @ gather_disjuncts t2
  • gather_disjuncts False = []
  • gather_disjuncts t = [t] when t matches neither Or (_, _) nor False
include Container.S1 with type 'a t := 'a t
type 'a t
val mem : 'a t -> 'a -> equal:('a -> 'a -> bool) -> bool

Checks whether the provided element is there, using equal.

val length : 'a t -> int
val is_empty : 'a t -> bool
val iter : 'a t -> f:('a -> unit) -> unit
val fold : 'a t -> init:'accum -> f:('accum -> 'a -> 'accum) -> 'accum

fold t ~init ~f returns f (... f (f (f init e1) e2) e3 ...) en, where e1..en are the elements of t

val fold_result : 'a t -> init:'accum -> f:('accum -> 'a -> ('accum'e) Base.Result.t) -> ('accum'e) Base.Result.t

fold_result t ~init ~f is a short-circuiting version of fold that runs in the Result monad. If f returns an Error _, that value is returned without any additional invocations of f.

val fold_until : 'a t -> init:'accum -> f:('accum -> 'a -> ('accum'final) Base__.Container_intf.Continue_or_stop.t) -> finish:('accum -> 'final) -> 'final

fold_until t ~init ~f ~finish is a short-circuiting version of fold. If f returns Stop _ the computation ceases and results in that value. If f returns Continue _, the fold will proceed. If f never returns Stop _, the final result is computed by finish.

Example:

type maybe_negative =
  | Found_negative of int
  | All_nonnegative of { sum : int }

(** [first_neg_or_sum list] returns the first negative number in [list], if any,
    otherwise returns the sum of the list. *)
let first_neg_or_sum =
  List.fold_until ~init:0
    ~f:(fun sum x ->
      if x < 0
      then Stop (Found_negative x)
      else Continue (sum + x))
    ~finish:(fun sum -> All_nonnegative { sum })
;;

let x = first_neg_or_sum [1; 2; 3; 4; 5]
val x : maybe_negative = All_nonnegative {sum = 15}

let y = first_neg_or_sum [1; 2; -3; 4; 5]
val y : maybe_negative = Found_negative -3
val exists : 'a t -> f:('a -> bool) -> bool

Returns true if and only if there exists an element for which the provided function evaluates to true. This is a short-circuiting operation.

val for_all : 'a t -> f:('a -> bool) -> bool

Returns true if and only if the provided function evaluates to true for all elements. This is a short-circuiting operation.

val count : 'a t -> f:('a -> bool) -> int

Returns the number of elements for which the provided function evaluates to true.

val sum : (module Base__.Container_intf.Summable with type t = 'sum) -> 'a t -> f:('a -> 'sum) -> 'sum

Returns the sum of f i for all i in the container.

val find : 'a t -> f:('a -> bool) -> 'a option

Returns as an option the first element for which f evaluates to true.

val find_map : 'a t -> f:('a -> 'b option) -> 'b option

Returns the first evaluation of f that returns Some, and returns None if there is no such element.

val to_list : 'a t -> 'a list
val to_array : 'a t -> 'a array
val min_elt : 'a t -> compare:('a -> 'a -> int) -> 'a option

Returns a minimum (resp maximum) element from the collection using the provided compare function, or None if the collection is empty. In case of a tie, the first element encountered while traversing the collection is returned. The implementation uses fold so it has the same complexity as fold.

val max_elt : 'a t -> compare:('a -> 'a -> int) -> 'a option

Blang.t sports a substitution monad:

  • return v is Base v (think of v as a variable)
  • bind t f replaces every Base v in t with f v (think of v as a variable and f as specifying the term to substitute for each variable)

Note: bind t f does short-circuiting, so f may not be called on every variable in t.

include Core_kernel__.Std_internal.Monad with type 'a t := 'a t
type 'a t
include Base__.Monad_intf.S_without_syntax with type 'a t := 'a t
type 'a t
include Base__.Monad_intf.Infix with type 'a t := 'a t
type 'a t
val (>>=) : 'a t -> ('a -> 'b t) -> 'b t

t >>= f returns a computation that sequences the computations represented by two monad elements. The resulting computation first does t to yield a value v, and then runs the computation returned by f v.

val (>>|) : 'a t -> ('a -> 'b) -> 'b t

t >>| f is t >>= (fun a -> return (f a)).

module Monad_infix : Base__.Monad_intf.Infix with type 'a t := 'a t
val bind : 'a t -> f:('a -> 'b t) -> 'b t

bind t ~f = t >>= f

val return : 'a -> 'a t

return v returns the (trivial) computation that returns v.

val map : 'a t -> f:('a -> 'b) -> 'b t

map t ~f is t >>| f.

val join : 'a t t -> 'a t

join t is t >>= (fun t' -> t').

val ignore_m : 'a t -> unit t

ignore_m t is map t ~f:(fun _ -> ()). ignore_m used to be called ignore, but we decided that was a bad name, because it shadowed the widely used Caml.ignore. Some monads still do let ignore = ignore_m for historical reasons.

val all : 'a t list -> 'a list t
val all_unit : unit t list -> unit t

Like all, but ensures that every monadic value in the list produces a unit value, all of which are discarded rather than being collected into a list.

val all_ignore : unit t list -> unit t
include Base__.Monad_intf.Syntax with type 'a t := 'a t
type 'a t
module Let_syntax : sig ... end
val values : 'a t -> 'a Core_kernel__.Import.list

values t forms the list containing every v for which Base v is a subexpression of t

val eval : 'a t -> ('a -> Core_kernel__.Import.bool) -> Core_kernel__.Import.bool

eval t f evaluates the proposition t relative to an environment f that assigns truth values to base propositions.

val eval_set : universe:('elt'comparator) Set.t Lazy.t -> ('a -> ('elt'comparator) Set.t) -> 'a t -> ('elt'comparator) Set.t

eval_set ~universe set_of_base expression returns the subset of elements e in universe that satisfy eval expression (fun base -> Set.mem (set_of_base base) e).

eval_set assumes, but does not verify, that set_of_base always returns a subset of universe. If this doesn't hold, then eval_set's result may contain elements not in universe.

And set1 set2 represents the elements that are both in set1 and set2, thus in the intersection of the two sets. Symmetrically, Or set1 set2 represents the union of set1 and set2.

val specialize : 'a t -> ('a -> [ `Known of Core_kernel__.Import.bool | `Unknown ]) -> 'a t

specialize t f partially evaluates t according to a perhaps-incomplete assignment f of the values of base propositions. The following laws (at least partially) characterize its behavior.

  • specialize t (fun _ -> `Unknown) = t
  • specialize t (fun x -> `Known (f x)) = constant (eval t f)
  • List.for_all (values (specialize t g)) ~f:(fun x -> g x = `Unknown)
  • if
      List.for_all (values t) ~f:(fun x ->
        match g x with
        | `Known b -> b = f x
        | `Unknown -> true)
    then
      eval t f = eval (specialize t g) f
val invariant : 'a t -> Core_kernel__.Import.unit
module Stable : sig ... end