Module Core_kernel.Blang
Boolean expressions.
Usage
For example, imagine writing a config file for an application that filters a stream of integers. Your goal is to keep only those integers that are multiples of either -3 or 5. Using Blang for this task, the code might look like:
module Property = struct
  type t =
    | Multiple_of of int
    | Positive
    | Negative
  [@@deriving sexp]
  let eval t num =
    match t with
    | Multiple_of n -> num % n = 0
    | Positive      -> num > 0
    | Negative      -> num < 0
end
type config = {
  keep : Property.t Blang.t;
} [@@deriving sexp]
let config = {
  keep = Blang.of_string "(or (and negative (multiple_of 3)) \
                         \    (and positive (multiple_of 5)))";
}
let keep config num : bool =
  Blang.eval config.keep (fun p -> Property.eval p num)Note how positive and negative and multiple_of become operators in a small, newly-defined boolean expression language that allows you to write statements like (and negative (multiple_of 3)).
Blang sexp syntax
The blang sexp syntax is almost exactly the derived one, except that:
1. Base properties are not marked explicitly. Thus, if your base property type has elements FOO, BAR, etc., then you could write the following Blang s-expressions:
        FOO
        (and FOO BAR)
        (if FOO BAR BAZ)and so on. Note that this gets in the way of using the blang "keywords" in your value language.
2. And and Or take a variable number of arguments, so that one can (and probably should) write
(and FOO BAR BAZ QUX)
instead of
(and FOO (and BAR (and BAZ QUX)))
- type 'a t- = private- |- True- |- False- |- And of 'a t * 'a t- |- Or of 'a t * 'a t- |- Not of 'a t- |- If of 'a t * 'a t * 'a t- |- Base of 'a
- Note that the sexps are not directly inferred from the type below -- there are lots of fancy shortcuts. Also, the sexps for - 'amust not look anything like blang sexps. Otherwise- t_of_sexpwill fail.
include Bin_prot.Binable.S1 with type 'a t := 'a t
- val bin_shape_t : Bin_prot.Shape.t -> Bin_prot.Shape.t
- val bin_size_t : ('a, 'a t) Bin_prot.Size.sizer1
- val bin_write_t : ('a, 'a t) Bin_prot.Write.writer1
- val bin_read_t : ('a, 'a t) Bin_prot.Read.reader1
- val __bin_read_t__ : ('a, int -> 'a t) Bin_prot.Read.reader1
- val bin_writer_t : ('a, 'a t) Bin_prot.Type_class.S1.writer
- val bin_reader_t : ('a, 'a t) Bin_prot.Type_class.S1.reader
- val bin_t : ('a, 'a t) Bin_prot.Type_class.S1.t
- val compare : ('a -> 'a -> Core_kernel__.Import.int) -> 'a t -> 'a t -> Core_kernel__.Import.int
- val hash_fold_t : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a t -> Base.Hash.state
include Ppx_sexp_conv_lib.Sexpable.S1 with type 'a t := 'a t
- val t_of_sexp : (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a t
- val sexp_of_t : ('a -> Sexplib0.Sexp.t) -> 'a t -> Sexplib0.Sexp.t
Smart constructors that simplify away constants whenever possible
module type Constructors = sig ... endinclude Constructors
- val base : 'a -> 'a t
- val true_ : _ t
- val false_ : _ t
- val constant : Core_kernel__.Import.bool -> _ t
- function true -> true_ | false -> false_
- val not_ : 'a t -> 'a t
- val and_ : 'a t Core_kernel__.Import.list -> 'a t
- n-ary - And
- val or_ : 'a t Core_kernel__.Import.list -> 'a t
- n-ary - Or
module O : sig ... end- val constant_value : 'a t -> Core_kernel__.Import.bool Core_kernel__.Import.option
- constant_value t = Some biff- t = constant b
- val gather_conjuncts : 'a t -> 'a t Core_kernel__.Import.list
- gather_conjuncts tgathers up all toplevel conjuncts in- t. For example,- gather_conjuncts (and_ ts) = ts
- gather_conjuncts (And (t1, t2)) = gather_conjuncts t1 @ gather_conjuncts t2
- gather_conjuncts True = []
- gather_conjuncts t = [t]when- tmatches neither- And (_, _)nor- True
 
- val gather_disjuncts : 'a t -> 'a t Core_kernel__.Import.list
- gather_disjuncts tgathers up all toplevel disjuncts in- t. For example,- gather_disjuncts (or_ ts) = ts
- gather_disjuncts (Or (t1, t2)) = gather_disjuncts t1 @ gather_disjuncts t2
- gather_disjuncts False = []
- gather_disjuncts t = [t]when- tmatches neither- Or (_, _)nor- False
 
include Container.S1 with type 'a t := 'a t
- val mem : 'a t -> 'a -> equal:('a -> 'a -> bool) -> bool
- Checks whether the provided element is there, using - equal.
- val length : 'a t -> int
- val is_empty : 'a t -> bool
- val iter : 'a t -> f:('a -> unit) -> unit
- val fold : 'a t -> init:'accum -> f:('accum -> 'a -> 'accum) -> 'accum
- fold t ~init ~freturns- f (... f (f (f init e1) e2) e3 ...) en, where- e1..enare the elements of- t
- val fold_result : 'a t -> init:'accum -> f:('accum -> 'a -> ('accum, 'e) Base.Result.t) -> ('accum, 'e) Base.Result.t
- fold_result t ~init ~fis a short-circuiting version of- foldthat runs in the- Resultmonad. If- freturns an- Error _, that value is returned without any additional invocations of- f.
- val fold_until : 'a t -> init:'accum -> f:('accum -> 'a -> ('accum, 'final) Base__.Container_intf.Continue_or_stop.t) -> finish:('accum -> 'final) -> 'final
- fold_until t ~init ~f ~finishis a short-circuiting version of- fold. If- freturns- Stop _the computation ceases and results in that value. If- freturns- Continue _, the fold will proceed. If- fnever returns- Stop _, the final result is computed by- finish.- Example: - type maybe_negative = | Found_negative of int | All_nonnegative of { sum : int } (** [first_neg_or_sum list] returns the first negative number in [list], if any, otherwise returns the sum of the list. *) let first_neg_or_sum = List.fold_until ~init:0 ~f:(fun sum x -> if x < 0 then Stop (Found_negative x) else Continue (sum + x)) ~finish:(fun sum -> All_nonnegative { sum }) ;; let x = first_neg_or_sum [1; 2; 3; 4; 5] val x : maybe_negative = All_nonnegative {sum = 15} let y = first_neg_or_sum [1; 2; -3; 4; 5] val y : maybe_negative = Found_negative -3
- val exists : 'a t -> f:('a -> bool) -> bool
- Returns - trueif and only if there exists an element for which the provided function evaluates to- true. This is a short-circuiting operation.
- val for_all : 'a t -> f:('a -> bool) -> bool
- Returns - trueif and only if the provided function evaluates to- truefor all elements. This is a short-circuiting operation.
- val count : 'a t -> f:('a -> bool) -> int
- Returns the number of elements for which the provided function evaluates to true. 
- val sum : (module Base__.Container_intf.Summable with type t = 'sum) -> 'a t -> f:('a -> 'sum) -> 'sum
- Returns the sum of - f ifor all- iin the container.
- val find : 'a t -> f:('a -> bool) -> 'a option
- Returns as an - optionthe first element for which- fevaluates to true.
- val find_map : 'a t -> f:('a -> 'b option) -> 'b option
- Returns the first evaluation of - fthat returns- Some, and returns- Noneif there is no such element.
- val to_list : 'a t -> 'a list
- val to_array : 'a t -> 'a array
- val min_elt : 'a t -> compare:('a -> 'a -> int) -> 'a option
- Returns a minimum (resp maximum) element from the collection using the provided - comparefunction, or- Noneif the collection is empty. In case of a tie, the first element encountered while traversing the collection is returned. The implementation uses- foldso it has the same complexity as- fold.
- val max_elt : 'a t -> compare:('a -> 'a -> int) -> 'a option
Blang.t sports a substitution monad:
- return vis- Base v(think of- vas a variable)
- bind t freplaces every- Base vin- twith- f v(think of- vas a variable and- fas specifying the term to substitute for each variable)
Note: bind t f does short-circuiting, so f may not be called on every variable in t.
include Core_kernel__.Std_internal.Monad with type 'a t := 'a t
include Base__.Monad_intf.S_without_syntax with type 'a t := 'a t
module Monad_infix : Base__.Monad_intf.Infix with type 'a t := 'a t- val return : 'a -> 'a t
- return vreturns the (trivial) computation that returns v.
- val ignore_m : 'a t -> unit t
- ignore_m tis- map t ~f:(fun _ -> ()).- ignore_mused to be called- ignore, but we decided that was a bad name, because it shadowed the widely used- Caml.ignore. Some monads still do- let ignore = ignore_mfor historical reasons.
- val values : 'a t -> 'a Core_kernel__.Import.list
- values tforms the list containing every- vfor which- Base vis a subexpression of- t
- val eval : 'a t -> ('a -> Core_kernel__.Import.bool) -> Core_kernel__.Import.bool
- eval t fevaluates the proposition- trelative to an environment- fthat assigns truth values to base propositions.
- val eval_set : universe:('elt, 'comparator) Set.t Lazy.t -> ('a -> ('elt, 'comparator) Set.t) -> 'a t -> ('elt, 'comparator) Set.t
- eval_set ~universe set_of_base expressionreturns the subset of elements- ein- universethat satisfy- eval expression (fun base -> Set.mem (set_of_base base) e).- eval_setassumes, but does not verify, that- set_of_basealways returns a subset of- universe. If this doesn't hold, then- eval_set's result may contain elements not in- universe.- And set1 set2represents the elements that are both in- set1and- set2, thus in the intersection of the two sets. Symmetrically,- Or set1 set2represents the union of- set1and- set2.
- val specialize : 'a t -> ('a -> [ `Known of Core_kernel__.Import.bool | `Unknown ]) -> 'a t
- specialize t fpartially evaluates- taccording to a perhaps-incomplete assignment- fof the values of base propositions. The following laws (at least partially) characterize its behavior.- specialize t (fun _ -> `Unknown) = t
 - specialize t (fun x -> `Known (f x)) = constant (eval t f)
 - List.for_all (values (specialize t g)) ~f:(fun x -> g x = `Unknown)
 - if List.for_all (values t) ~f:(fun x -> match g x with | `Known b -> b = f x | `Unknown -> true) then eval t f = eval (specialize t g) f
 
- val invariant : 'a t -> Core_kernel__.Import.unit
module Stable : sig ... end