Module Core_kernel.Map
Map is a functional data structure (balanced binary tree) implementing finite maps over a totally-ordered domain, called a "key".
For example:
let empty = Map.empty (module String)
let numbers =
  Map.of_alist_exn (module String)
    ["three", Substr "three"; "four", Substr "four"]Note that the functions in Map are polymorphic over the type of the key and of the data; you just need to pass in the first-class module for the key type (here, String).
Suppose you wanted to define a new module Foo to use in a map. You would write:
module Foo = struct
  module T = struct
    type t = int * int
    let compare x y = Tuple2.compare Int.compare Int.compare
    let sexp_of_t = Tuple2.sexp_of_t Int.sexp_of_t Int.sexp_of_t
  end
  include T
  include Comparable.Make(T)
endThis gives you a module Foo with the appropriate comparator in it, and then this:
let m = Map.empty (module Foo)lets you create a map keyed by Foo. The reason you need to write a sexp-converter and a comparison function for this to work is that maps both need comparison and the ability to serialize the key for generating useful errors. It's yet nicer to do this with the appropriate PPXs:
module Foo = struct
  module T =
  struct  type t = int * int [@@deriving sexp_of, compare]  end
  include T
  include Comparable.Make(T)
endThe interface
- type ('key, +'value, 'cmp) t- = ('key, 'value, 'cmp) Base.Map.t
- type ('k, 'cmp) comparator- = (module Comparator.S with type comparator_witness = 'cmp and type t = 'k)
- val invariants : (_, _, _) t -> Core_kernel__.Import.bool
- Test if invariants of internal AVL search tree hold. 
- val comparator : ('a, _, 'cmp) t -> ('a, 'cmp) Comparator.t
- val comparator_s : ('a, _, 'cmp) t -> ('a, 'cmp) comparator
- val empty : ('a, 'cmp) comparator -> ('a, 'b, 'cmp) t
- The empty map. 
- val singleton : ('a, 'cmp) comparator -> 'a -> 'b -> ('a, 'b, 'cmp) t
- Map with one (key, data) pair. 
- val of_alist : ('a, 'cmp) comparator -> ('a * 'b) Core_kernel__.Import.list -> [ `Ok of ('a, 'b, 'cmp) t | `Duplicate_key of 'a ]
- Creates map from an association list with unique keys. 
- val of_alist_or_error : ('a, 'cmp) comparator -> ('a * 'b) Core_kernel__.Import.list -> ('a, 'b, 'cmp) t Or_error.t
- Creates map from an association list with unique keys. Returns an error if duplicate - 'akeys are found.
- val of_alist_exn : ('a, 'cmp) comparator -> ('a * 'b) Core_kernel__.Import.list -> ('a, 'b, 'cmp) t
- Creates map from an association list with unique keys. Raises an exception if duplicate - 'akeys are found.
- val of_hashtbl_exn : ('a, 'cmp) comparator -> ('a, 'b) Hashtbl.t -> ('a, 'b, 'cmp) t
- of_hashtbl_exncreates a map from bindings present in a hash table.- of_hashtbl_exnraises if there are distinct keys- a1and- a2in the table with- comparator.compare a1 a2 = 0, which is only possible if the hash-table comparison function is different than- comparator.compare. In the common case, the comparison is the same, in which case- of_hashtbl_exndoes not raise, regardless of the keys present in the table.
- val of_alist_multi : ('a, 'cmp) comparator -> ('a * 'b) Core_kernel__.Import.list -> ('a, 'b Core_kernel__.Import.list, 'cmp) t
- Creates map from an association list with possibly repeated keys. 
- val of_alist_fold : ('a, 'cmp) comparator -> ('a * 'b) Core_kernel__.Import.list -> init:'c -> f:('c -> 'b -> 'c) -> ('a, 'c, 'cmp) t
- Combines an association list into a map, folding together bound values with common keys. 
- val of_alist_reduce : ('a, 'cmp) comparator -> ('a * 'b) Core_kernel__.Import.list -> f:('b -> 'b -> 'b) -> ('a, 'b, 'cmp) t
- Combines an association list into a map, reducing together bound values with common keys. 
- val of_iteri : ('a, 'cmp) comparator -> iteri:(f:(key:'a -> data:'b -> Core_kernel__.Import.unit) -> Core_kernel__.Import.unit) -> [ `Ok of ('a, 'b, 'cmp) t | `Duplicate_key of 'a ]
- of_iteri ~iteribehaves like- of_alist, except that instead of taking a concrete datastruture, it takes an iteration function. For instance, to convert a string table into a map:- of_iteri (module String) ~f:(Hashtbl.iteri table). It is faster than adding the elements one by one.
Trees
Parallel to the three kinds of map modules Map, Map.Poly, and Key.Map, there are also tree modules Map.Tree, Map.Poly.Tree, and Key.Map.Tree. A tree is a bare representation of a map, without the comparator. Thus tree operations need to obtain the comparator from somewhere. For Map.Poly.Tree and Key.Map.Tree, the comparator is implicit in the module name. For Map.Tree, the comparator must be passed to each operation.
The main advantages of trees over maps are slightly improved space usage (there is no outer container holding the comparator) and the ability to marshal trees, because a tree doesn't contain a closure, the way a map does.
The main disadvantages of using trees are needing to be more explicit about the comparator, and the possibility of accidentally using polymorphic equality on a tree (for which maps dynamically detect failure due to the presence of a closure in the data structure).
module Tree : sig ... end- val to_tree : ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) Tree.t
- val of_tree : ('k, 'cmp) comparator -> ('k, 'v, 'cmp) Tree.t -> ('k, 'v, 'cmp) t
- Creates a - tfrom a- Tree.tand a- Comparator.t. This is an O(n) operation as it must discover the length of the- Tree.t.
More interface
- val of_sorted_array : ('a, 'cmp) comparator -> ('a * 'b) Core_kernel__.Import.array -> ('a, 'b, 'cmp) t Or_error.t
- Creates map from a sorted array of key-data pairs. The input array must be sorted, as given by the relevant comparator (either in ascending or descending order), and must not contain any duplicate keys. If either of these conditions does not hold, an error is returned. 
- val of_sorted_array_unchecked : ('a, 'cmp) comparator -> ('a * 'b) Core_kernel__.Import.array -> ('a, 'b, 'cmp) t
- Like - of_sorted_arrayexcept it returns a map with broken invariants when an- Errorwould have been returned.
- val of_increasing_iterator_unchecked : ('a, 'cmp) comparator -> len:Core_kernel__.Import.int -> f:(Core_kernel__.Import.int -> 'a * 'b) -> ('a, 'b, 'cmp) t
- of_increasing_iterator_unchecked c ~len ~fbehaves like- of_sorted_array_unchecked c (Array.init len ~f), with the additional restriction that a decreasing order is not supported. The advantage is not requiring you to allocate an intermediate array.- fwill be called with 0, 1, ...- len - 1, in order.
- val of_increasing_sequence : ('k, 'cmp) comparator -> ('k * 'v) Sequence.t -> ('k, 'v, 'cmp) t Or_error.t
- of_increasing_sequence c seqbehaves like- of_sorted_array c (Sequence.to_array seq), but does not allocate the intermediate array.- The sequence will be folded over once, and the additional time complexity is O(n). 
- val is_empty : (_, _, _) t -> Core_kernel__.Import.bool
- Tests whether a map is empty or not. 
- val length : (_, _, _) t -> Core_kernel__.Import.int
- length mapreturns number of elements in- map. O(1), but- Tree.lengthis O(n).
- val add : ('k, 'v, 'cmp) t -> key:'k -> data:'v -> ('k, 'v, 'cmp) t Map_intf.Or_duplicate.t
- add_exn t ~key ~datareturns- textended with- keymapped to- data, raising if- mem key t.
- val add_exn : ('k, 'v, 'cmp) t -> key:'k -> data:'v -> ('k, 'v, 'cmp) t
- val set : ('k, 'v, 'cmp) t -> key:'k -> data:'v -> ('k, 'v, 'cmp) t
- Returns a new map with the specified new binding; if the key was already bound, its previous binding disappears. 
- val add_multi : ('k, 'v Core_kernel__.Import.list, 'cmp) t -> key:'k -> data:'v -> ('k, 'v Core_kernel__.Import.list, 'cmp) t
- If - keyis not present then add a singleton list, otherwise, cons data onto the head of the existing list.
- val remove_multi : ('k, 'v Core_kernel__.Import.list, 'cmp) t -> 'k -> ('k, 'v Core_kernel__.Import.list, 'cmp) t
- If - kis present then remove its head element; if result is empty, remove the key.
- val find_multi : ('k, 'v Core_kernel__.Import.list, 'cmp) t -> 'k -> 'v Core_kernel__.Import.list
- find_multi t keyreturns- t's values for- keyif- keyis present in the table, and returns the empty list otherwise.
- val change : ('k, 'v, 'cmp) t -> 'k -> f:('v Core_kernel__.Import.option -> 'v Core_kernel__.Import.option) -> ('k, 'v, 'cmp) t
- change t key ~freturns a new map- mthat is the same as- ton all keys except for- key, and whose value for- keyis defined by- f, i.e.,- find m key = f (find t key).
- val update : ('k, 'v, 'cmp) t -> 'k -> f:('v Core_kernel__.Import.option -> 'v) -> ('k, 'v, 'cmp) t
- update t key ~fis- change t key ~f:(fun o -> Some (f o)).
- val find : ('k, 'v, 'cmp) t -> 'k -> 'v Core_kernel__.Import.option
- Returns the value bound to the given key if it exists, and - Noneotherwise.
- val find_exn : ('k, 'v, 'cmp) t -> 'k -> 'v
- Returns the value bound to the given key, raising - Not_foundif none such exists.
- val find_or_error : ('k, 'v, 'cmp) t -> 'k -> 'v Or_error.t
- val remove : ('k, 'v, 'cmp) t -> 'k -> ('k, 'v, 'cmp) t
- Returns a new map with any binding for the key in question removed. 
- val mem : ('k, _, 'cmp) t -> 'k -> Core_kernel__.Import.bool
- mem map keytests whether- mapcontains a binding for- key.
- val iter_keys : ('k, _, _) t -> f:('k -> Core_kernel__.Import.unit) -> Core_kernel__.Import.unit
- val iter : (_, 'v, _) t -> f:('v -> Core_kernel__.Import.unit) -> Core_kernel__.Import.unit
- val iteri : ('k, 'v, _) t -> f:(key:'k -> data:'v -> Core_kernel__.Import.unit) -> Core_kernel__.Import.unit
- val iter2 : ('k, 'v1, 'cmp) t -> ('k, 'v2, 'cmp) t -> f:(key:'k -> data:[ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] -> Core_kernel__.Import.unit) -> Core_kernel__.Import.unit
- Iterates two maps side by side. The complexity of this function is O(M+N). If two inputs are - [(0, a); (1, a)]and- [(1, b); (2, b)],- fwill be called with- [(0, `Left a); (1, `Both (a, b)); (2, `Right b)]
- val map : ('k, 'v1, 'cmp) t -> f:('v1 -> 'v2) -> ('k, 'v2, 'cmp) t
- Returns new map with bound values replaced by the result of - fapplied to them.
- val mapi : ('k, 'v1, 'cmp) t -> f:(key:'k -> data:'v1 -> 'v2) -> ('k, 'v2, 'cmp) t
- Like - map, but- ftakes both key and data as arguments.
- val fold : ('k, 'v, _) t -> init:'a -> f:(key:'k -> data:'v -> 'a -> 'a) -> 'a
- Folds over keys and data in map in increasing order of key. 
- val fold_right : ('k, 'v, _) t -> init:'a -> f:(key:'k -> data:'v -> 'a -> 'a) -> 'a
- Folds over keys and data in map in decreasing order of key. 
- val fold2 : ('k, 'v1, 'cmp) t -> ('k, 'v2, 'cmp) t -> init:'a -> f:(key:'k -> data:[ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] -> 'a -> 'a) -> 'a
- Folds over two maps side by side, like - iter2.
- val filter_keys : ('k, 'v, 'cmp) t -> f:('k -> Core_kernel__.Import.bool) -> ('k, 'v, 'cmp) t
- val filter : ('k, 'v, 'cmp) t -> f:('v -> Core_kernel__.Import.bool) -> ('k, 'v, 'cmp) t
- val filteri : ('k, 'v, 'cmp) t -> f:(key:'k -> data:'v -> Core_kernel__.Import.bool) -> ('k, 'v, 'cmp) t
- val filter_map : ('k, 'v1, 'cmp) t -> f:('v1 -> 'v2 Core_kernel__.Import.option) -> ('k, 'v2, 'cmp) t
- Returns new map with bound values filtered by the result of - fapplied to them.
- val filter_mapi : ('k, 'v1, 'cmp) t -> f:(key:'k -> data:'v1 -> 'v2 Core_kernel__.Import.option) -> ('k, 'v2, 'cmp) t
- Like - filter_map, but function takes both key and data as arguments.
- val partition_mapi : ('k, 'v1, 'cmp) t -> f:(key:'k -> data:'v1 -> [ `Fst of 'v2 | `Snd of 'v3 ]) -> ('k, 'v2, 'cmp) t * ('k, 'v3, 'cmp) t
- partition_mapi t ~freturns two new- ts, with each key in- tappearing in exactly one of the result maps depending on its mapping in- f.
- val partition_map : ('k, 'v1, 'cmp) t -> f:('v1 -> [ `Fst of 'v2 | `Snd of 'v3 ]) -> ('k, 'v2, 'cmp) t * ('k, 'v3, 'cmp) t
- partition_map t ~f = partition_mapi t ~f:(fun ~key:_ ~data -> f data)
- val partitioni_tf : ('k, 'v, 'cmp) t -> f:(key:'k -> data:'v -> Core_kernel__.Import.bool) -> ('k, 'v, 'cmp) t * ('k, 'v, 'cmp) t
- partitioni_tf t ~f = partition_mapi t ~f:(fun ~key ~data -> if f ~key ~data then `Fst data else `Snd data)
- val partition_tf : ('k, 'v, 'cmp) t -> f:('v -> Core_kernel__.Import.bool) -> ('k, 'v, 'cmp) t * ('k, 'v, 'cmp) t
- partition_tf t ~f = partitioni_tf t ~f:(fun ~key:_ ~data -> f data)
- val compare_direct : ('v -> 'v -> Core_kernel__.Import.int) -> ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> Core_kernel__.Import.int
- Total ordering between maps. The first argument is a total ordering used to compare data associated with equal keys in the two maps. 
- val hash_fold_direct : 'k Core_kernel__.Import.Hash.folder -> 'v Core_kernel__.Import.Hash.folder -> ('k, 'v, 'cmp) t Core_kernel__.Import.Hash.folder
- Hash function: a building block to use when hashing data structures containing maps in them. - hash_fold_direct hash_fold_keyis compatible with- compare_directiff- hash_fold_keyis compatible with- (comparator m).compareof the map- mbeing hashed.
- val equal : ('v -> 'v -> Core_kernel__.Import.bool) -> ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> Core_kernel__.Import.bool
- equal cmp m1 m2tests whether the maps- m1and- m2are equal, that is, contain equal keys and associate them with equal data.- cmpis the equality predicate used to compare the data associated with the keys.
- val keys : ('k, _, _) t -> 'k Core_kernel__.Import.list
- Returns list of keys in map. 
- val data : (_, 'v, _) t -> 'v Core_kernel__.Import.list
- Returns list of data in map. 
- val to_alist : ?key_order:[ `Increasing | `Decreasing ] -> ('k, 'v, _) t -> ('k * 'v) Core_kernel__.Import.list
- Creates association list from map. - parameter key_order
- default is - `Increasing
 
- val validate : name:('k -> Core_kernel__.Import.string) -> 'v Core_kernel__.Import.Validate.check -> ('k, 'v, _) t Core_kernel__.Import.Validate.check
Additional operations on maps
- val merge : ('k, 'v1, 'cmp) t -> ('k, 'v2, 'cmp) t -> f:(key:'k -> [ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] -> 'v3 Core_kernel__.Import.option) -> ('k, 'v3, 'cmp) t
- Merges two maps. The runtime is O(length(t1) + length(t2)). In particular, you shouldn't use this function to merge a list of maps. Consider using - merge_skewedinstead.
- val merge_skewed : ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> combine:(key:'k -> 'v -> 'v -> 'v) -> ('k, 'v, 'cmp) t
- A special case of - merge,- merge_skewed t1 t2is a map containing all the bindings of- t1and- t2. Bindings that appear in both- t1and- t2are merged using the- combinefunction. In a call- combine ~key v1 v2the value- v1comes from- t1and- v2from- t2.- The runtime of - merge_skewedis- O(l1 * log(l2)), where- l1is the length of the smaller map and- l2the length of the larger map. This is likely to be faster than- mergewhen one of the maps is a lot smaller, or when you merge a list of maps.
module Symmetric_diff_element : sig ... end- val symmetric_diff : ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> data_equal:('v -> 'v -> Core_kernel__.Import.bool) -> ('k, 'v) Symmetric_diff_element.t Sequence.t
- symmetric_diff t1 t2 ~data_equalreturns a list of changes between- t1and- t2. It is intended to be efficient in the case where- t1and- t2share a large amount of structure. The keys in the output sequence will be in sorted order.
- val min_elt : ('k, 'v, _) t -> ('k * 'v) Core_kernel__.Import.option
- min_elt mapreturns- Some (key, data)pair corresponding to the minimum key in- map,- Noneif- mapis empty.
- val min_elt_exn : ('k, 'v, _) t -> 'k * 'v
- val max_elt : ('k, 'v, _) t -> ('k * 'v) Core_kernel__.Import.option
- max_elt mapreturns- Some (key, data)pair corresponding to the maximum key in- map, and- Noneif- mapis empty.
- val max_elt_exn : ('k, 'v, _) t -> 'k * 'v
- val for_all : ('k, 'v, _) t -> f:('v -> Core_kernel__.Import.bool) -> Core_kernel__.Import.bool
- val for_alli : ('k, 'v, _) t -> f:(key:'k -> data:'v -> Core_kernel__.Import.bool) -> Core_kernel__.Import.bool
- val exists : ('k, 'v, _) t -> f:('v -> Core_kernel__.Import.bool) -> Core_kernel__.Import.bool
- val existsi : ('k, 'v, _) t -> f:(key:'k -> data:'v -> Core_kernel__.Import.bool) -> Core_kernel__.Import.bool
- val count : ('k, 'v, _) t -> f:('v -> Core_kernel__.Import.bool) -> Core_kernel__.Import.int
- val counti : ('k, 'v, _) t -> f:(key:'k -> data:'v -> Core_kernel__.Import.bool) -> Core_kernel__.Import.int
- val split : ('k, 'v, 'cmp) t -> 'k -> ('k, 'v, 'cmp) t * ('k * 'v) Core_kernel__.Import.option * ('k, 'v, 'cmp) t
- split t keyreturns a map of keys strictly less than- key, the mapping of- keyif any, and a map of keys strictly greater than- key.- Runtime is O(m + log n) where n is the size of the input map, and m is the size of the smaller of the two output maps. The O(m) term is due to the need to calculate the length of the output maps. * 
- val append : lower_part:('k, 'v, 'cmp) t -> upper_part:('k, 'v, 'cmp) t -> [ `Ok of ('k, 'v, 'cmp) t | `Overlapping_key_ranges ]
- append ~lower_part ~upper_partreturns- `Ok mapwhere- mapcontains all the- (key, value)pairs from the two input maps if all the keys from- lower_partare less than all the keys from- upper_part. Otherwise it returns- `Overlapping_key_ranges.- Runtime is O(log n) where n is the size of the larger input map. This can be significantly faster than - Map.mergeor repeated- Map.add.- assert (match Map.append ~lower_part ~upper_part with | `Ok whole_map -> whole_map = Map.(of_alist_exn (List.append (to_alist lower_part) (to_alist upper_part))) | `Overlapping_key_ranges -> true);
- val subrange : ('k, 'v, 'cmp) t -> lower_bound:'k Maybe_bound.t -> upper_bound:'k Maybe_bound.t -> ('k, 'v, 'cmp) t
- subrange t ~lower_bound ~upper_boundreturns a map containing all the entries from- twhose keys lie inside the interval indicated by- ~lower_boundand- ~upper_bound. If this interval is empty, an empty map is returned.- Runtime is O(m + log n) where n is the size of the input map, and m is the size of the output map. The O(m) term is due to the need to calculate the length of the output map. 
- val fold_range_inclusive : ('k, 'v, 'cmp) t -> min:'k -> max:'k -> init:'a -> f:(key:'k -> data:'v -> 'a -> 'a) -> 'a
- fold_range_inclusive t ~min ~max ~init ~ffolds- f(with initial value- ~init) over all keys (and their associated values) that are in the range- [min, max](inclusive).
- val range_to_alist : ('k, 'v, 'cmp) t -> min:'k -> max:'k -> ('k * 'v) Core_kernel__.Import.list
- range_to_alist t ~min ~maxreturns an associative list of the elements whose keys lie in- [min, max](inclusive), with the smallest key being at the head of the list.
- val closest_key : ('k, 'v, 'cmp) t -> [ `Greater_or_equal_to | `Greater_than | `Less_or_equal_to | `Less_than ] -> 'k -> ('k * 'v) Core_kernel__.Import.option
- closest_key t dir kreturns the- (key, value)pair in- twith- keyclosest to- k, which satisfies the given inequality bound.- For example, - closest_key t `Less_than kwould be the pair with the closest key to- kwhere- key < k.- to_sequencecan be used to get the same results as- closest_key. It is less efficient for individual lookups but more efficient for finding many elements starting at some value.
- val nth : ('k, 'v, _) t -> Core_kernel__.Import.int -> ('k * 'v) Core_kernel__.Import.option
- nth t nfinds the (key, value) pair of rank n (i.e., such that there are exactly n keys strictly less than the found key), if one exists. O(log(length t) + n) time.
- val nth_exn : ('k, 'v, _) t -> Core_kernel__.Import.int -> 'k * 'v
- val rank : ('k, 'v, 'cmp) t -> 'k -> Core_kernel__.Import.int Core_kernel__.Import.option
- rank t kif- kis in- t, returns the number of keys strictly less than- kin- t, otherwise- None.
- val to_sequence : ?order:[ `Increasing_key | `Decreasing_key ] -> ?keys_greater_or_equal_to:'k -> ?keys_less_or_equal_to:'k -> ('k, 'v, 'cmp) t -> ('k * 'v) Sequence.t
- to_sequence ?order ?keys_greater_or_equal_to ?keys_less_or_equal_to tgives a sequence of key-value pairs between- keys_less_or_equal_toand- keys_greater_or_equal_toinclusive, presented in- order. If- keys_greater_or_equal_to > keys_less_or_equal_to, the sequence is empty. Cost is O(log n) up front and amortized O(1) to produce each element.- parameter order
- `Increasing_keyis the default
 
- val quickcheck_generator : ('k, 'cmp) comparator -> 'k Quickcheck.Generator.t -> 'v Quickcheck.Generator.t -> ('k, 'v, 'cmp) t Quickcheck.Generator.t
- val quickcheck_observer : 'k Quickcheck.Observer.t -> 'v Quickcheck.Observer.t -> ('k, 'v, 'cmp) t Quickcheck.Observer.t
- val quickcheck_shrinker : 'k Quickcheck.Shrinker.t -> 'v Quickcheck.Shrinker.t -> ('k, 'v, 'cmp) t Quickcheck.Shrinker.t
- This shrinker and the other shrinkers for maps and trees produce a shrunk value by dropping a key-value pair, shrinking a key or shrinking a value. A shrunk key will override an existing key's value. 
Which Map module should you use?
The map types and operations appear in three places:
- Map: polymorphic map operations
- Map.Poly: maps that use polymorphic comparison to order keys
- Key.Map: maps with a fixed key type that use Key.compareto order keys
where Key is any module defining values that can be used as keys of a map, like Int, String, etc. To add this functionality to an arbitrary module, use the Comparable.Make functor.
You should use Map for functions that access existing maps, like find, mem, add, fold, iter, and to_alist. For functions that create maps, like empty, singleton, and of_alist, strive to use the corresponding Key.Map function, which will use the comparison function specifically for Key. As a last resort, if you don't have easy access to a comparison function for the keys in your map, use Map.Poly to create the map. This will use OCaml's built-in polymorphic comparison to compare keys, with all the usual performance and robustness problems that entails.
Interface design details
An instance of the map type is determined by the types of the map's keys and values, and the comparison function used to order the keys:
type ('key, 'value, 'cmp) Map.t 'cmp is a phantom type uniquely identifying the comparison function, as generated by Comparator.Make.
Map.Poly supports arbitrary key and value types, but enforces that the comparison function used to order the keys is polymorphic comparison. Key.Map has a fixed key type and comparison function, and supports arbitrary values.
type ('key, 'value) Map.Poly.t = ('key , 'value, Comparator.Poly.t) Map.t
type 'value Key.Map.t          = (Key.t, 'value, Key.comparator   ) Map.tThe same map operations exist in Map, Map.Poly, and Key.Map, albeit with different types. For example:
val Map.length      : (_, _, _) Map.t   -> int
val Map.Poly.length : (_, _) Map.Poly.t -> int
val Key.Map.length  : _ Key.Map.t       -> intBecause Map.Poly.t and Key.Map.t are exposed as instances of the more general Map.t type, one can use Map.length on any map. The same is true for all of the functions that access an existing map, such as add, change, find, fold, iter, map, to_alist, etc.
Depending on the number of type variables N, the type of accessor (resp. creator) functions is defined in the module type AccessorsN (CreatorsN) in Map_intf. Also for creators, when the comparison function is not fixed, i.e., the 'cmp variable of Map.t is free, we need to pass a comparator to the function creating the map. The module type is called Creators3_with_comparator. There is also a module type Accessors3_with_comparator in addition to Accessors3 which used for trees since the comparator is not known.
module Using_comparator : sig ... endmodule type For_deriving = Map_intf.For_derivinginclude For_deriving with type ('a, 'b, 'c) For_deriving.t := ('a, 'b, 'c) t
module type Sexp_of_m = sig ... endmodule type M_of_sexp = sig ... endmodule type Compare_m = sig ... endmodule type Hash_fold_m = Base.Hasher.S- val sexp_of_m__t : (module Sexp_of_m with type t = 'k) -> ('v -> Base.Sexp.t) -> ('k, 'v, 'cmp) t -> Base.Sexp.t
- val m__t_of_sexp : (module M_of_sexp with type comparator_witness = 'cmp and type t = 'k) -> (Base.Sexp.t -> 'v) -> Base.Sexp.t -> ('k, 'v, 'cmp) t
- val compare_m__t : (module Compare_m) -> ('v -> 'v -> int) -> ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> int
- val hash_fold_m__t : (module Hash_fold_m with type t = 'k) -> (Base.Hash.state -> 'v -> Base.Hash.state) -> Base.Hash.state -> ('k, 'v, 'a) t -> Base.Hash.state
module type Key_plain = Map_intf.Key_plainmodule type Key = Map_intf.Keymodule type Key_binable = Map_intf.Key_binablemodule type S_plain = Map_intf.S_plainmodule type S = Map_intf.Smodule type S_binable = Map_intf.S_binablemodule Make_plain_using_comparator : functor (Key : sig ... end) -> S_plain with type Key.t = Key.t with type Key.comparator_witness = Key.comparator_witnessmodule Make_using_comparator : functor (Key : sig ... end) -> S with type Key.t = Key.t with type Key.comparator_witness = Key.comparator_witnessmodule Make_binable : functor (Key : Key_binable) -> S_binable with type Key.t = Key.tmodule Make_binable_using_comparator : functor (Key : sig ... end) -> S_binable with type Key.t = Key.t with type Key.comparator_witness = Key.comparator_witness- module Stable : sig ... end
- The following functors may be used to define stable modules