Module Core_kernel.Pool

module Tuple_type = Tuple_type
module type S = Pool_intf.S

This uses a Uniform_array.t to implement the pool. We expose that Pointer.t is an int so that OCaml can avoid the write barrier, due to knowing that Pointer.t isn't an OCaml pointer.

module Pointer : sig ... end
type 'slots t

A pool. 'slots will look like ('a1, ..., 'an) Slots.tn, and the pool holds tuples of type 'a1 * ... * 'an.

val sexp_of_t : ('slots -> Ppx_sexp_conv_lib.Sexp.t) -> 'slots t -> Ppx_sexp_conv_lib.Sexp.t
val invariant : 'a Base__.Invariant_intf.inv -> 'a t Base__.Invariant_intf.inv
val pointer_is_valid : 'slots t -> 'slots Pointer.t -> Core_kernel__.Import.bool

pointer_is_valid t pointer returns true iff pointer points to a live tuple in t, i.e. pointer is not null, not free, and is in the range of t.

A pointer might not be in the range of a pool if it comes from another pool for example. In this case unsafe_get/set functions would cause a segfault.

val id_of_pointer : 'slots t -> 'slots Pointer.t -> Pointer.Id.t

id_of_pointer t pointer returns an id that is unique for the lifetime of pointer's tuple. When the tuple is freed, the id is no longer valid, and pointer_of_id_exn will fail on it. Pointer.null () has a distinct id from all non-null pointers.

val pointer_of_id_exn : 'slots t -> Pointer.Id.t -> 'slots Pointer.t

pointer_of_id_exn t id returns the pointer corresponding to id. It fails if the tuple corresponding to id was already freed.

val create : ('tuple'a) Slots.t -> capacity:Core_kernel__.Import.int -> dummy:'tuple -> ('tuple'a) Slots.t t

create slots ~capacity ~dummy creates an empty pool that can hold up to capacity N-tuples. The slots of dummy are stored in free tuples. create raises if capacity < 0 || capacity > max_capacity ~slots_per_tuple.

val max_capacity : slots_per_tuple:Core_kernel__.Import.int -> Core_kernel__.Import.int

max_capacity returns the maximum capacity allowed when creating a pool.

val capacity : 'a t -> Core_kernel__.Import.int

capacity returns the maximum number of tuples that the pool can hold.

val length : 'a t -> Core_kernel__.Import.int

length returns the number of tuples currently in the pool.

0 <= length t <= capacity t
val grow : ?⁠capacity:Core_kernel__.Import.int -> 'a t -> 'a t

grow t ~capacity returns a new pool t' with the supplied capacity. The new pool is to be used as a replacement for t. All live tuples in t are now live in t', and valid pointers to tuples in t are now valid pointers to the identical tuple in t'. It is an error to use t after calling grow t.

grow raises if the supplied capacity isn't larger than capacity t.

val is_full : 'a t -> Core_kernel__.Import.bool

is_full t returns true if no more tuples can be allocated in t.

val free : 'slots t -> 'slots Pointer.t -> Core_kernel__.Import.unit

free t pointer frees the tuple pointed to by pointer from t.

val unsafe_free : 'slots t -> 'slots Pointer.t -> Core_kernel__.Import.unit

unsafe_free t pointer frees the tuple pointed to by pointer without checking pointer_is_valid

val new1 : 'a0 Slots.t1 t -> 'a0 -> 'a0 Slots.t1 Pointer.t

new<N> t a0 ... a<N-1> returns a new tuple from the pool, with the tuple's slots initialized to a0 ... a<N-1>. new raises if is_full t.

val new2 : ('a0'a1) Slots.t2 t -> 'a0 -> 'a1 -> ('a0'a1) Slots.t2 Pointer.t
val new3 : ('a0'a1'a2) Slots.t3 t -> 'a0 -> 'a1 -> 'a2 -> ('a0'a1'a2) Slots.t3 Pointer.t
val new4 : ('a0'a1'a2'a3) Slots.t4 t -> 'a0 -> 'a1 -> 'a2 -> 'a3 -> ('a0'a1'a2'a3) Slots.t4 Pointer.t
val new5 : ('a0'a1'a2'a3'a4) Slots.t5 t -> 'a0 -> 'a1 -> 'a2 -> 'a3 -> 'a4 -> ('a0'a1'a2'a3'a4) Slots.t5 Pointer.t
val new6 : ('a0'a1'a2'a3'a4'a5) Slots.t6 t -> 'a0 -> 'a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> ('a0'a1'a2'a3'a4'a5) Slots.t6 Pointer.t
val new7 : ('a0'a1'a2'a3'a4'a5'a6) Slots.t7 t -> 'a0 -> 'a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> ('a0'a1'a2'a3'a4'a5'a6) Slots.t7 Pointer.t
val new8 : ('a0'a1'a2'a3'a4'a5'a6'a7) Slots.t8 t -> 'a0 -> 'a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> ('a0'a1'a2'a3'a4'a5'a6'a7) Slots.t8 Pointer.t
val new9 : ('a0'a1'a2'a3'a4'a5'a6'a7'a8) Slots.t9 t -> 'a0 -> 'a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> ('a0'a1'a2'a3'a4'a5'a6'a7'a8) Slots.t9 Pointer.t
val new10 : ('a0'a1'a2'a3'a4'a5'a6'a7'a8'a9) Slots.t10 t -> 'a0 -> 'a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'a9 -> ('a0'a1'a2'a3'a4'a5'a6'a7'a8'a9) Slots.t10 Pointer.t
val new11 : ('a0'a1'a2'a3'a4'a5'a6'a7'a8'a9'a10) Slots.t11 t -> 'a0 -> 'a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'a9 -> 'a10 -> ('a0'a1'a2'a3'a4'a5'a6'a7'a8'a9'a10) Slots.t11 Pointer.t
val new12 : ('a0'a1'a2'a3'a4'a5'a6'a7'a8'a9'a10'a11) Slots.t12 t -> 'a0 -> 'a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'a9 -> 'a10 -> 'a11 -> ('a0'a1'a2'a3'a4'a5'a6'a7'a8'a9'a10'a11) Slots.t12 Pointer.t
val new13 : ('a0'a1'a2'a3'a4'a5'a6'a7'a8'a9'a10'a11'a12) Slots.t13 t -> 'a0 -> 'a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'a9 -> 'a10 -> 'a11 -> 'a12 -> ('a0'a1'a2'a3'a4'a5'a6'a7'a8'a9'a10'a11'a12) Slots.t13 Pointer.t
val new14 : ('a0'a1'a2'a3'a4'a5'a6'a7'a8'a9'a10'a11'a12'a13) Slots.t14 t -> 'a0 -> 'a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'a9 -> 'a10 -> 'a11 -> 'a12 -> 'a13 -> ('a0'a1'a2'a3'a4'a5'a6'a7'a8'a9'a10'a11'a12'a13) Slots.t14 Pointer.t
val get_tuple : ('tuple'a) Slots.t t -> ('tuple'a) Slots.t Pointer.t -> 'tuple

get_tuple t pointer allocates an OCaml tuple isomorphic to the pool t's tuple pointed to by pointer. The tuple gets copied, but its slots do not.

val get : ('a'variant) Slots.t t -> ('a'variant) Slots.t Pointer.t -> ('variant'slot) Slot.t -> 'slot

get t pointer slot gets slot of the tuple pointed to by pointer in pool t.

set t pointer slot a sets to a the slot of the tuple pointed to by pointer in pool t.

In get and set, it is an error to refer to a pointer that has been freed. It is also an error to use a pointer with any pool other than the one the pointer was new'd from or grown to. These errors will lead to undefined behavior, but will not segfault.

unsafe_get is comparable in speed to get for immediate values, and 5%-10% faster for pointers.

unsafe_get and unsafe_set skip bounds checking, and can thus segfault.

val unsafe_get : ('a'variant) Slots.t t -> ('a'variant) Slots.t Pointer.t -> ('variant'slot) Slot.t -> 'slot
val set : ('a'variant) Slots.t t -> ('a'variant) Slots.t Pointer.t -> ('variant'slot) Slot.t -> 'slot -> Core_kernel__.Import.unit
val unsafe_set : ('a'variant) Slots.t t -> ('a'variant) Slots.t Pointer.t -> ('variant'slot) Slot.t -> 'slot -> Core_kernel__.Import.unit
module Unsafe : sig ... end

An Unsafe pool is like an ordinary pool, except that the create function does not require an initial element. The pool stores a dummy value for each slot. Such a pool is only safe if one never accesses a slot from a freed tuple.

module Debug : functor (Pool : S) -> sig ... end

Debug builds a pool in which every function can run invariant on its pool argument(s) and/or print a debug message to stderr, as determined by !check_invariant and !show_messages, which are initially both true.

module Error_check : functor (Pool : S) -> S

Error_check builds a pool that has additional error checking for pointers, in particular to detect using a freed pointer or multiply freeing a pointer.