module Std : sig ... end
include Std
include Core_kernel__.Std_kernel
Std_kernel
defines modules exposed by Core_kernel
that are not overridden by
Core
. It is used in core.ml
to re-export these modules.
include Core_kernel__.Std_internal
include Core_kernel__.Core_pervasives
This module has exactly the same interface and implementation as INRIA's Pervasives, except that some things are deprecated in favor of Core equivalents.
Functions here are in one of four states: 1. Deprecated using @
Deprecated . 2. Accepted as part of Core for the forseeable future. 3. We haven't yet decided whether to deprecate, as indicated by a CR. 4. We plan to deprecate eventually, but haven't yet, as indicated by a CR.
Eventually, this module will be removed, and it will be recommended to compile with -nopervasives when using Core.
external raise_notrace : exn ‑> 'a = "%raise_notrace"
A faster version raise
which does not record the backtrace.
exception
Exit
The Exit
exception is not raised by any library function. It is
provided for use in your programs.
external (=) : 'a ‑> 'a ‑> bool = "%equal"
e1 = e2
tests for structural equality of e1
and e2
.
Mutable structures (e.g. references and arrays) are equal
if and only if their current contents are structurally equal,
even if the two mutable objects are not the same physical object.
Equality between functional values raises Invalid_argument
.
Equality between cyclic data structures may not terminate.
external (>=) : 'a ‑> 'a ‑> bool = "%greaterequal"
Structural ordering functions. These functions coincide with
the usual orderings over integers, characters, strings, byte sequences
and floating-point numbers, and extend them to a
total ordering over all types.
The ordering is compatible with ( = )
. As in the case
of ( = )
, mutable structures are compared by contents.
Comparison between functional values raises Invalid_argument
.
Comparison between cyclic structures may not terminate.
external compare : 'a ‑> 'a ‑> int = "%compare"
compare x y
returns 0
if x
is equal to y
,
a negative integer if x
is less than y
, and a positive integer
if x
is greater than y
. The ordering implemented by compare
is compatible with the comparison predicates =
, <
and >
defined above, with one difference on the treatment of the float value
Pervasives.nan. Namely, the comparison predicates treat nan
as different from any other float value, including itself;
while compare
treats nan
as equal to itself and less than any
other float value. This treatment of nan
ensures that compare
defines a total ordering relation.
compare
applied to functional values may raise Invalid_argument
.
compare
applied to cyclic structures may not terminate.
The compare
function can be used as the comparison function
required by the Set.Make and Map.Make functors, as well as
the List.sort and Array.sort functions.
val min : 'a ‑> 'a ‑> 'a
Return the smaller of the two arguments.
The result is unspecified if one of the arguments contains
the float value nan
.
val max : 'a ‑> 'a ‑> 'a
Return the greater of the two arguments.
The result is unspecified if one of the arguments contains
the float value nan
.
external (==) : 'a ‑> 'a ‑> bool = "%eq"
e1 == e2
tests for physical equality of e1
and e2
.
On mutable types such as references, arrays, byte sequences, records with
mutable fields and objects with mutable instance variables,
e1 == e2
is true if and only if physical modification of e1
also affects e2
.
On non-mutable types, the behavior of ( == )
is
implementation-dependent; however, it is guaranteed that
e1 == e2
implies compare e1 e2 = 0
.
external (&&) : bool ‑> bool ‑> bool = "%sequand"
The boolean 'and'. Evaluation is sequential, left-to-right:
in e1 && e2
, e1
is evaluated first, and if it returns false
,
e2
is not evaluated at all.
external (||) : bool ‑> bool ‑> bool = "%sequor"
The boolean 'or'. Evaluation is sequential, left-to-right:
in e1 || e2
, e1
is evaluated first, and if it returns true
,
e2
is not evaluated at all.
external __LOC__ : string = "%loc_LOC"
__LOC__
returns the location at which this expression appears in
the file currently being parsed by the compiler, with the standard
error format of OCaml: "File %S, line %d, characters %d-%d"
external __FILE__ : string = "%loc_FILE"
__FILE__
returns the name of the file currently being
parsed by the compiler.
external __LINE__ : int = "%loc_LINE"
__LINE__
returns the line number at which this expression
appears in the file currently being parsed by the compiler.
external __MODULE__ : string = "%loc_MODULE"
__MODULE__
returns the module name of the file being
parsed by the compiler.
external __POS__ : string * int * int * int = "%loc_POS"
__POS__
returns a tuple (file,lnum,cnum,enum)
, corresponding
to the location at which this expression appears in the file
currently being parsed by the compiler. file
is the current
filename, lnum
the line number, cnum
the character position in
the line and enum
the last character position in the line.
external __LOC_OF__ : 'a ‑> string * 'a = "%loc_LOC"
__LOC_OF__ expr
returns a pair (loc, expr)
where loc
is the
location of expr
in the file currently being parsed by the
compiler, with the standard error format of OCaml: "File %S, line
%d, characters %d-%d"
external __LINE_OF__ : 'a ‑> int * 'a = "%loc_LINE"
__LINE_OF__ expr
returns a pair (line, expr)
, where line
is the
line number at which the expression expr
appears in the file
currently being parsed by the compiler.
external __POS_OF__ : 'a ‑> (string * int * int * int) * 'a = "%loc_POS"
__POS_OF__ expr
returns a pair (expr,loc)
, where loc
is a
tuple (file,lnum,cnum,enum)
corresponding to the location at
which the expression expr
appears in the file currently being
parsed by the compiler. file
is the current filename, lnum
the
line number, cnum
the character position in the line and enum
the last character position in the line.
external (|>) : 'a ‑> ('a ‑> 'b) ‑> 'b = "%revapply"
Reverse-application operator: x |> f |> g
is exactly equivalent
to g (f (x))
.
external (@@) : ('a ‑> 'b) ‑> 'a ‑> 'b = "%apply"
Application operator: g @@ f @@ x
is exactly equivalent to
g (f (x))
.
Integers are 31 bits wide (or 63 bits on 64-bit processors). All operations are taken modulo 231 (or 263). They do not fail on overflow.
external (~+) : int ‑> int = "%identity"
Unary addition. You can also write + e
instead of ~+ e
.
external (/) : int ‑> int ‑> int = "%divint"
Integer division.
Raise Division_by_zero
if the second argument is 0.
Integer division rounds the real quotient of its arguments towards zero.
More precisely, if x >= 0
and y > 0
, x / y
is the greatest integer
less than or equal to the real quotient of x
by y
. Moreover,
(- x) / y = x / (- y) = - (x / y)
.
external (mod) : int ‑> int ‑> int = "%modint"
Integer remainder. If y
is not zero, the result
of x mod y
satisfies the following properties:
x = (x / y) * y + x mod y
and
abs(x mod y) <= abs(y) - 1
.
If y = 0
, x mod y
raises Division_by_zero
.
Note that x mod y
is negative only if x < 0
.
Raise Division_by_zero
if y
is zero.
val abs : int ‑> int
Return the absolute value of the argument. Note that this may be
negative if the argument is min_int
.
external (lsl) : int ‑> int ‑> int = "%lslint"
n lsl m
shifts n
to the left by m
bits.
The result is unspecified if m < 0
or m >= bitsize
,
where bitsize
is 32
on a 32-bit platform and
64
on a 64-bit platform.
external (lsr) : int ‑> int ‑> int = "%lsrint"
n lsr m
shifts n
to the right by m
bits.
This is a logical shift: zeroes are inserted regardless of
the sign of n
.
The result is unspecified if m < 0
or m >= bitsize
.
external (asr) : int ‑> int ‑> int = "%asrint"
n asr m
shifts n
to the right by m
bits.
This is an arithmetic shift: the sign bit of n
is replicated.
The result is unspecified if m < 0
or m >= bitsize
.
OCaml's floating-point numbers follow the
IEEE 754 standard, using double precision (64 bits) numbers.
Floating-point operations never raise an exception on overflow,
underflow, division by zero, etc. Instead, special IEEE numbers
are returned as appropriate, such as infinity
for 1.0 /. 0.0
,
neg_infinity
for -1.0 /. 0.0
, and nan
('not a number')
for 0.0 /. 0.0
. These special numbers then propagate through
floating-point computations as expected: for instance,
1.0 /. infinity
is 0.0
, and any arithmetic operation with nan
as argument returns nan
as result.
external (~-.) : float ‑> float = "%negfloat"
Unary negation. You can also write -. e
instead of ~-. e
.
external (~+.) : float ‑> float = "%identity"
Unary addition. You can also write +. e
instead of ~+. e
.
external expm1 : float ‑> float = "caml_expm1_float" "caml_expm1"
expm1 x
computes exp x -. 1.0
, giving numerically-accurate results
even if x
is close to 0.0
.
external log1p : float ‑> float = "caml_log1p_float" "caml_log1p"
log1p x
computes log(1.0 +. x)
(natural logarithm),
giving numerically-accurate results even if x
is close to 0.0
.
external acos : float ‑> float = "caml_acos_float" "acos"
Arc cosine. The argument must fall within the range [-1.0, 1.0]
.
Result is in radians and is between 0.0
and pi
.
external asin : float ‑> float = "caml_asin_float" "asin"
Arc sine. The argument must fall within the range [-1.0, 1.0]
.
Result is in radians and is between -pi/2
and pi/2
.
external atan : float ‑> float = "caml_atan_float" "atan"
Arc tangent.
Result is in radians and is between -pi/2
and pi/2
.
external atan2 : float ‑> float ‑> float = "caml_atan2_float" "atan2"
atan2 y x
returns the arc tangent of y /. x
. The signs of x
and y
are used to determine the quadrant of the result.
Result is in radians and is between -pi
and pi
.
external hypot : float ‑> float ‑> float = "caml_hypot_float" "caml_hypot"
hypot x y
returns sqrt(x *. x + y *. y)
, that is, the length
of the hypotenuse of a right-angled triangle with sides of length
x
and y
, or, equivalently, the distance of the point (x,y)
to origin.
external cosh : float ‑> float = "caml_cosh_float" "cosh"
Hyperbolic cosine. Argument is in radians.
external tanh : float ‑> float = "caml_tanh_float" "tanh"
Hyperbolic tangent. Argument is in radians.
external ceil : float ‑> float = "caml_ceil_float" "ceil"
Round above to an integer value.
ceil f
returns the least integer value greater than or equal to f
.
The result is returned as a float.
external floor : float ‑> float = "caml_floor_float" "floor"
Round below to an integer value.
floor f
returns the greatest integer value less than or
equal to f
.
The result is returned as a float.
external copysign : float ‑> float ‑> float = "caml_copysign_float" "caml_copysign"
copysign x y
returns a float whose absolute value is that of x
and whose sign is that of y
. If x
is nan
, returns nan
.
If y
is nan
, returns either x
or -. x
, but it is not
specified which.
external mod_float : float ‑> float ‑> float = "caml_fmod_float" "fmod"
mod_float a b
returns the remainder of a
with respect to
b
. The returned value is a -. n *. b
, where n
is the quotient a /. b
rounded towards zero to an integer.
external frexp : float ‑> float * int = "caml_frexp_float"
frexp f
returns the pair of the significant
and the exponent of f
. When f
is zero, the
significant x
and the exponent n
of f
are equal to
zero. When f
is non-zero, they are defined by
f = x *. 2 ** n
and 0.5 <= x < 1.0
.
external ldexp : float ‑> int ‑> float = "caml_ldexp_float" "caml_ldexp_float_unboxed"
ldexp x n
returns x *. 2 ** n
.
external modf : float ‑> float * float = "caml_modf_float"
modf f
returns the pair of the fractional and integral
part of f
.
external int_of_float : float ‑> int = "%intoffloat"
Truncate the given floating-point number to an integer.
The result is unspecified if the argument is nan
or falls outside the
range of representable integers.
val nan : float
A special floating-point value denoting the result of an
undefined operation such as 0.0 /. 0.0
. Stands for
'not a number'. Any floating-point operation with nan
as
argument returns nan
as result. As for floating-point comparisons,
=
, <
, <=
, >
and >=
return false
and <>
returns true
if one or both of their arguments is nan
.
val epsilon_float : float
The difference between 1.0
and the smallest exactly representable
floating-point number greater than 1.0
.
type fpclass
= Pervasives.fpclass
=
The five classes of floating-point numbers, as determined by the Pervasives.classify_float function.
external classify_float : float ‑> fpclass = "caml_classify_float" "caml_classify_float_unboxed"
Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.
More string operations are provided in module String.
More character operations are provided in module Char.
val char_of_int : int ‑> char
Return the character with the given ASCII code.
Raise Invalid_argument "char_of_int"
if the argument is
outside the range 0--255.
external ignore : 'a ‑> unit = "%ignore"
Discard the value of its argument and return ()
.
For instance, ignore(f x)
discards the result of
the side-effecting function f
. It is equivalent to
f x; ()
, except that the latter may generate a
compiler warning; writing ignore(f x)
instead
avoids the warning.
val string_of_bool : bool ‑> string
Return the string representation of a boolean. As the returned values may be shared, the user should not modify them directly.
val bool_of_string : string ‑> bool
Convert the given string to a boolean.
Raise Invalid_argument "bool_of_string"
if the string is not
"true"
or "false"
.
external int_of_string : string ‑> int = "caml_int_of_string"
Convert the given string to an integer.
The string is read in decimal (by default) or in hexadecimal (if it
begins with 0x
or 0X
), octal (if it begins with 0o
or 0O
),
or binary (if it begins with 0b
or 0B
).
Raise Failure "int_of_string"
if the given string is not
a valid representation of an integer, or if the integer represented
exceeds the range of integers representable in type int
.
external float_of_string : string ‑> float = "caml_float_of_string"
Convert the given string to a float. Raise Failure "float_of_string"
if the given string is not a valid representation of a float.
More list operations are provided in module List.
Note: all input/output functions can raise Sys_error
when the system
calls they invoke fail.
val print_endline : string ‑> unit
Print a string, followed by a newline character, on standard output and flush standard output.
val print_newline : unit ‑> unit
Print a newline character on standard output, and flush standard output. This can be used to simulate line buffering of standard output.
val prerr_endline : string ‑> unit
Print a string, followed by a newline character on standard error and flush standard error.
val prerr_newline : unit ‑> unit
Print a newline character on standard error, and flush standard error.
val read_line : unit ‑> string
Flush standard output, then read characters from standard input until a newline character is encountered. Return the string of all characters read, without the newline character at the end.
val read_int : unit ‑> int
Flush standard output, then read one line from standard input
and convert it to an integer. Raise Failure "int_of_string"
if the line read is not a valid representation of an integer.
val read_float : unit ‑> float
Flush standard output, then read one line from standard input and convert it to a floating-point number. The result is unspecified if the line read is not a valid representation of a floating-point number.
type open_flag
= Pervasives.open_flag
=
Opening modes for Pervasives.open_out_gen and Pervasives.open_in_gen.
val open_out : string ‑> Pervasives.out_channel
Open the named file for writing, and return a new output channel on that file, positionned at the beginning of the file. The file is truncated to zero length if it already exists. It is created if it does not already exists.
val open_out_bin : string ‑> Pervasives.out_channel
Same as Pervasives.open_out, but the file is opened in binary mode, so that no translation takes place during writes. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Pervasives.open_out.
val open_out_gen : Pervasives.open_flag list ‑> int ‑> string ‑> Pervasives.out_channel
open_out_gen mode perm filename
opens the named file for writing,
as described above. The extra argument mode
specify the opening mode. The extra argument perm
specifies
the file permissions, in case the file must be created.
Pervasives.open_out and Pervasives.open_out_bin are special
cases of this function.
val flush : Pervasives.out_channel ‑> unit
Flush the buffer associated with the given output channel, performing all pending writes on that channel. Interactive programs must be careful about flushing standard output and standard error at the right time.
val output_char : Pervasives.out_channel ‑> char ‑> unit
Write the character on the given output channel.
val output_string : Pervasives.out_channel ‑> string ‑> unit
Write the string on the given output channel.
val output_bytes : Pervasives.out_channel ‑> bytes ‑> unit
Write the byte sequence on the given output channel.
val output : Pervasives.out_channel ‑> bytes ‑> int ‑> int ‑> unit
output oc buf pos len
writes len
characters from byte sequence buf
,
starting at offset pos
, to the given output channel oc
.
Raise Invalid_argument "output"
if pos
and len
do not
designate a valid range of buf
.
val output_substring : Pervasives.out_channel ‑> string ‑> int ‑> int ‑> unit
Same as output
but take a string as argument instead of
a byte sequence.
val output_byte : Pervasives.out_channel ‑> int ‑> unit
Write one 8-bit integer (as the single character with that code) on the given output channel. The given integer is taken modulo 256.
val output_binary_int : Pervasives.out_channel ‑> int ‑> unit
Write one integer in binary format (4 bytes, big-endian) on the given output channel. The given integer is taken modulo 232. The only reliable way to read it back is through the Pervasives.input_binary_int function. The format is compatible across all machines for a given version of OCaml.
val output_value : Pervasives.out_channel ‑> 'a ‑> unit
Write the representation of a structured value of any type to a channel. Circularities and sharing inside the value are detected and preserved. The object can be read back, by the function Pervasives.input_value. See the description of module Marshal for more information. Pervasives.output_value is equivalent to Marshal.to_channel with an empty list of flags.
val seek_out : Pervasives.out_channel ‑> int ‑> unit
seek_out chan pos
sets the current writing position to pos
for channel chan
. This works only for regular files. On
files of other kinds (such as terminals, pipes and sockets),
the behavior is unspecified.
val pos_out : Pervasives.out_channel ‑> int
Return the current writing position for the given channel. Does
not work on channels opened with the Open_append
flag (returns
unspecified results).
val out_channel_length : Pervasives.out_channel ‑> int
Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless.
val close_out : Pervasives.out_channel ‑> unit
Close the given channel, flushing all buffered write operations.
Output functions raise a Sys_error
exception when they are
applied to a closed output channel, except close_out
and flush
,
which do nothing when applied to an already closed channel.
Note that close_out
may raise Sys_error
if the operating
system signals an error when flushing or closing.
val set_binary_mode_out : Pervasives.out_channel ‑> bool ‑> unit
set_binary_mode_out oc true
sets the channel oc
to binary
mode: no translations take place during output.
set_binary_mode_out oc false
sets the channel oc
to text
mode: depending on the operating system, some translations
may take place during output. For instance, under Windows,
end-of-lines will be translated from \n
to \r\n
.
This function has no effect under operating systems that
do not distinguish between text mode and binary mode.
val open_in : string ‑> Pervasives.in_channel
Open the named file for reading, and return a new input channel on that file, positionned at the beginning of the file.
val open_in_bin : string ‑> Pervasives.in_channel
Same as Pervasives.open_in, but the file is opened in binary mode, so that no translation takes place during reads. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Pervasives.open_in.
val open_in_gen : Pervasives.open_flag list ‑> int ‑> string ‑> Pervasives.in_channel
open_in_gen mode perm filename
opens the named file for reading,
as described above. The extra arguments
mode
and perm
specify the opening mode and file permissions.
Pervasives.open_in and Pervasives.open_in_bin are special
cases of this function.
val input_char : Pervasives.in_channel ‑> char
Read one character from the given input channel.
Raise End_of_file
if there are no more characters to read.
val input_line : Pervasives.in_channel ‑> string
Read characters from the given input channel, until a
newline character is encountered. Return the string of
all characters read, without the newline character at the end.
Raise End_of_file
if the end of the file is reached
at the beginning of line.
val input : Pervasives.in_channel ‑> bytes ‑> int ‑> int ‑> int
input ic buf pos len
reads up to len
characters from
the given channel ic
, storing them in byte sequence buf
, starting at
character number pos
.
It returns the actual number of characters read, between 0 and
len
(inclusive).
A return value of 0 means that the end of file was reached.
A return value between 0 and len
exclusive means that
not all requested len
characters were read, either because
no more characters were available at that time, or because
the implementation found it convenient to do a partial read;
input
must be called again to read the remaining characters,
if desired. (See also Pervasives.really_input for reading
exactly len
characters.)
Exception Invalid_argument "input"
is raised if pos
and len
do not designate a valid range of buf
.
val really_input : Pervasives.in_channel ‑> bytes ‑> int ‑> int ‑> unit
really_input ic buf pos len
reads len
characters from channel ic
,
storing them in byte sequence buf
, starting at character number pos
.
Raise End_of_file
if the end of file is reached before len
characters have been read.
Raise Invalid_argument "really_input"
if
pos
and len
do not designate a valid range of buf
.
val really_input_string : Pervasives.in_channel ‑> int ‑> string
really_input_string ic len
reads len
characters from channel ic
and returns them in a new string.
Raise End_of_file
if the end of file is reached before len
characters have been read.
val input_byte : Pervasives.in_channel ‑> int
Same as Pervasives.input_char, but return the 8-bit integer representing
the character.
Raise End_of_file
if an end of file was reached.
val input_binary_int : Pervasives.in_channel ‑> int
Read an integer encoded in binary format (4 bytes, big-endian)
from the given input channel. See Pervasives.output_binary_int.
Raise End_of_file
if an end of file was reached while reading the
integer.
val input_value : Pervasives.in_channel ‑> 'a
Read the representation of a structured value, as produced by Pervasives.output_value, and return the corresponding value. This function is identical to Marshal.from_channel; see the description of module Marshal for more information, in particular concerning the lack of type safety.
val seek_in : Pervasives.in_channel ‑> int ‑> unit
seek_in chan pos
sets the current reading position to pos
for channel chan
. This works only for regular files. On
files of other kinds, the behavior is unspecified.
val in_channel_length : Pervasives.in_channel ‑> int
Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless. The returned size does not take into account the end-of-line translations that can be performed when reading from a channel opened in text mode.
val close_in : Pervasives.in_channel ‑> unit
Close the given channel. Input functions raise a Sys_error
exception when they are applied to a closed input channel,
except close_in
, which does nothing when applied to an already
closed channel.
val set_binary_mode_in : Pervasives.in_channel ‑> bool ‑> unit
set_binary_mode_in ic true
sets the channel ic
to binary
mode: no translations take place during input.
set_binary_mode_out ic false
sets the channel ic
to text
mode: depending on the operating system, some translations
may take place during input. For instance, under Windows,
end-of-lines will be translated from \r\n
to \n
.
This function has no effect under operating systems that
do not distinguish between text mode and binary mode.
module LargeFile = Core_kernel__.Core_pervasives.LargeFile
Operations on large files.
This sub-module provides 64-bit variants of the channel functions
that manipulate file positions and file sizes. By representing
positions and sizes by 64-bit integers (type int64
) instead of
regular integers (type int
), these alternate functions allow
operating on files whose sizes are greater than max_int
.
external (!) : 'a ref ‑> 'a = "%field0"
!r
returns the current contents of reference r
.
Equivalent to fun r -> r.contents
.
external (:=) : 'a ref ‑> 'a ‑> unit = "%setfield0"
r := a
stores the value of a
in reference r
.
Equivalent to fun r v -> r.contents <- v
.
external incr : int ref ‑> unit = "%incr"
Increment the integer contained in the given reference.
Equivalent to fun r -> r := succ !r
.
external decr : int ref ‑> unit = "%decr"
Decrement the integer contained in the given reference.
Equivalent to fun r -> r := pred !r
.
Result type
Format strings are character strings with special lexical conventions that defines the functionality of formatted input/output functions. Format strings are used to read data with formatted input functions from module Scanf and to print data with formatted output functions from modules Printf and Format.
Format strings are made of three kinds of entities:
'%'
followed by one or more characters specifying what kind of argument to
read or print,'@'
followed by one or more characters specifying how to read or print the
argument,There is an additional lexical rule to escape the special characters '%'
and '@'
in format strings: if a special character follows a '%'
character, it is treated as a plain character. In other words, "%%"
is
considered as a plain '%'
and "%@"
as a plain '@'
.
For more information about conversion specifications and formatting indications available, read the documentation of modules Scanf, Printf and Format.
Format strings have a general and highly polymorphic type
('a, 'b, 'c, 'd, 'e, 'f) format6
.
The two simplified types, format
and format4
below are
included for backward compatibility with earlier releases of
OCaml.
The meaning of format string type parameters is as follows:
'a
is the type of the parameters of the format for formatted output
functions (printf
-style functions);
'a
is the type of the values read by the format for formatted input
functions (scanf
-style functions).'b
is the type of input source for formatted input functions and the
type of output target for formatted output functions.
For printf
-style functions from module Printf
, 'b
is typically
out_channel
;
for printf
-style functions from module Format
, 'b
is typically
Format.formatter
;
for scanf
-style functions from module Scanf
, 'b
is typically
Scanf.Scanning.in_channel
.Type argument 'b
is also the type of the first argument given to
user's defined printing functions for %a
and %t
conversions,
and user's defined reading functions for %r
conversion.
'c
is the type of the result of the %a
and %t
printing
functions, and also the type of the argument transmitted to the
first argument of kprintf
-style functions or to the
kscanf
-style functions.'d
is the type of parameters for the scanf
-style functions.'e
is the type of the receiver function for the scanf
-style functions.'f
is the final result type of a formatted input/output function
invocation: for the printf
-style functions, it is typically unit
;
for the scanf
-style functions, it is typically the result type of the
receiver function.type ('a, 'b, 'c, 'd, 'e, 'f) format6
= ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6
val string_of_format : ('a, 'b, 'c, 'd, 'e, 'f) format6 ‑> string
Converts a format string into a string.
external format_of_string : ('a, 'b, 'c, 'd, 'e, 'f) format6 ‑> ('a, 'b, 'c, 'd, 'e, 'f) format6 = "%identity"
format_of_string s
returns a format string read from the string
literal s
.
Note: format_of_string
can not convert a string argument that is not a
literal. If you need this functionality, use the more general
Scanf.format_from_string function.
val (^^) : ('a, 'b, 'c, 'd, 'e, 'f) format6 ‑> ('f, 'b, 'c, 'e, 'g, 'h) format6 ‑> ('a, 'b, 'c, 'd, 'g, 'h) format6
f1 ^^ f2
catenates format strings f1
and f2
. The result is a
format string that behaves as the concatenation of format strings f1
and
f2
: in case of formatted output, it accepts arguments from f1
, then
arguments from f2
; in case of formatted input, it returns results from
f1
, then results from f2
.
val exit : int ‑> 'a
Terminate the process, returning the given status code
to the operating system: usually 0 to indicate no errors,
and a small positive integer to indicate failure.
All open output channels are flushed with flush_all
.
An implicit exit 0
is performed each time a program
terminates normally. An implicit exit 2
is performed if the program
terminates early because of an uncaught exception.
val at_exit : (unit ‑> unit) ‑> unit
Register the given function to be called at program
termination time. The functions registered with at_exit
will be called when the program executes Pervasives.exit,
or terminates, either normally or because of an uncaught exception.
The functions are called in 'last in, first out' order:
the function most recently added with at_exit
is called first.
include Either.Export
include Core_kernel__.Import.From_sexplib
include sig ... end
val bigstring_of_sexp : Sexplib.Sexp.t ‑> bigstring
val sexp_of_bigstring : bigstring ‑> Sexplib.Sexp.t
val sexp_of_opaque : _ ‑> Core_kernel__.Import.Sexp.t
val opaque_of_sexp : Core_kernel__.Import.Sexp.t ‑> _
val sexp_of_pair : ('a ‑> Core_kernel__.Import.Sexp.t) ‑> ('b ‑> Core_kernel__.Import.Sexp.t) ‑> ('a * 'b) ‑> Core_kernel__.Import.Sexp.t
val pair_of_sexp : (Core_kernel__.Import.Sexp.t ‑> 'a) ‑> (Core_kernel__.Import.Sexp.t ‑> 'b) ‑> Core_kernel__.Import.Sexp.t ‑> 'a * 'b
exception
Of_sexp_error of Core_kernel__.Import.exn * Core_kernel__.Import.Sexp.t
val of_sexp_error : Core_kernel__.Import.string ‑> Core_kernel__.Import.Sexp.t ‑> _
val of_sexp_error_exn : Core_kernel__.Import.exn ‑> Core_kernel__.Import.Sexp.t ‑> _
include Interfaces
module type Applicative = Core_kernel__.Import.Applicative.S
module type Binable = Core_kernel__.Binable0.S
module type Comparable = Comparable.S
module type Comparable_binable = Comparable.S_binable
module type Floatable = Core_kernel__.Import.Floatable.S
module type Hashable = Hashable.S
module type Hashable_binable = Hashable.S_binable
module type Identifiable = Identifiable.S
module type Infix_comparators = Comparable.Infix
module type Intable = Core_kernel__.Import.Intable.S
module type Monad = Core_kernel__.Import.Monad.S
module type Quickcheckable = Quickcheckable.S
module type Robustly_comparable = Robustly_comparable.S
module type Sexpable = Sexpable.S
module type Stable = Core_kernel__.Stable_module_types.S0
module type Stable_int63able = Core_kernel__.Stable_int63able.S
module type Stable1 = Core_kernel__.Stable_module_types.S1
module type Stable2 = Core_kernel__.Stable_module_types.S2
module type Stable3 = Core_kernel__.Stable_module_types.S3
module type Stable4 = Core_kernel__.Stable_module_types.S4
module type Stringable = Core_kernel__.Import.Stringable.S
include Core_kernel__.Core_list.Infix
val (@) : 'a Base__List.t ‑> 'a Base__List.t ‑> 'a Base__List.t
include Core_kernel__.Never_returns
never_returns
should be used as the return type of functions that don't return and
might block forever, rather than 'a
or _
. This forces callers of such functions
to have a call to never_returns
at the call site, which makes it clear to readers
what's going on. We do not intend to use this type for functions such as failwithf
that always raise an exception.
val sexp_of_never_returns : never_returns ‑> Sexplib.Sexp.t
val never_returns : Nothing.t ‑> 'a
include Ordering.Export
include Perms.Export
We don't expose bin_io
for write
due to a naming conflict with the functions
exported by bin_io
for read_write
. If you want bin_io
for write
, use
Write.t
.
include sig ... end
val read_of_sexp : Sexplib.Sexp.t ‑> read
val sexp_of_read : read ‑> Sexplib.Sexp.t
val hash_fold_read : Ppx_hash_lib.Std.Hash.state ‑> read ‑> Ppx_hash_lib.Std.Hash.state
val hash_read : read ‑> Ppx_hash_lib.Std.Hash.hash_value
val compare_read : read ‑> read ‑> Core_kernel__.Import.int
val bin_read : read Bin_prot.Type_class.t
val bin_read_read : read Bin_prot.Read.reader
val __bin_read_read__ : (Core_kernel__.Import.int ‑> read) Bin_prot.Read.reader
val bin_reader_read : read Bin_prot.Type_class.reader
val bin_size_read : read Bin_prot.Size.sizer
val bin_write_read : read Bin_prot.Write.writer
val bin_writer_read : read Bin_prot.Type_class.writer
val bin_shape_read : Bin_prot.Shape.t
include sig ... end
val write_of_sexp : Sexplib.Sexp.t ‑> write
val sexp_of_write : write ‑> Sexplib.Sexp.t
val hash_fold_write : Ppx_hash_lib.Std.Hash.state ‑> write ‑> Ppx_hash_lib.Std.Hash.state
val hash_write : write ‑> Ppx_hash_lib.Std.Hash.hash_value
val compare_write : write ‑> write ‑> Core_kernel__.Import.int
include sig ... end
val immutable_of_sexp : Sexplib.Sexp.t ‑> immutable
val sexp_of_immutable : immutable ‑> Sexplib.Sexp.t
val hash_fold_immutable : Ppx_hash_lib.Std.Hash.state ‑> immutable ‑> Ppx_hash_lib.Std.Hash.state
val hash_immutable : immutable ‑> Ppx_hash_lib.Std.Hash.hash_value
val compare_immutable : immutable ‑> immutable ‑> Core_kernel__.Import.int
val bin_immutable : immutable Bin_prot.Type_class.t
val bin_read_immutable : immutable Bin_prot.Read.reader
val __bin_read_immutable__ : (Core_kernel__.Import.int ‑> immutable) Bin_prot.Read.reader
val bin_reader_immutable : immutable Bin_prot.Type_class.reader
val bin_size_immutable : immutable Bin_prot.Size.sizer
val bin_write_immutable : immutable Bin_prot.Write.writer
val bin_writer_immutable : immutable Bin_prot.Type_class.writer
val bin_shape_immutable : Bin_prot.Shape.t
include sig ... end
val read_write_of_sexp : Sexplib.Sexp.t ‑> read_write
val sexp_of_read_write : read_write ‑> Sexplib.Sexp.t
val hash_fold_read_write : Ppx_hash_lib.Std.Hash.state ‑> read_write ‑> Ppx_hash_lib.Std.Hash.state
val hash_read_write : read_write ‑> Ppx_hash_lib.Std.Hash.hash_value
val compare_read_write : read_write ‑> read_write ‑> Core_kernel__.Import.int
val bin_read_write : read_write Bin_prot.Type_class.t
val bin_read_read_write : read_write Bin_prot.Read.reader
val __bin_read_read_write__ : (Core_kernel__.Import.int ‑> read_write) Bin_prot.Read.reader
val bin_reader_read_write : read_write Bin_prot.Type_class.reader
val bin_size_read_write : read_write Bin_prot.Size.sizer
val bin_write_read_write : read_write Bin_prot.Write.writer
val bin_writer_read_write : read_write Bin_prot.Type_class.writer
val bin_shape_read_write : Bin_prot.Shape.t
include sig ... end
val perms_of_sexp : (Sexplib.Sexp.t ‑> 'a) ‑> Sexplib.Sexp.t ‑> 'a perms
val sexp_of_perms : ('a ‑> Sexplib.Sexp.t) ‑> 'a perms ‑> Sexplib.Sexp.t
val hash_fold_perms : (Ppx_hash_lib.Std.Hash.state ‑> 'a ‑> Ppx_hash_lib.Std.Hash.state) ‑> Ppx_hash_lib.Std.Hash.state ‑> 'a perms ‑> Ppx_hash_lib.Std.Hash.state
val compare_perms : ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a perms ‑> 'a perms ‑> Core_kernel__.Import.int
val bin_perms : 'a Bin_prot.Type_class.t ‑> 'a perms Bin_prot.Type_class.t
val bin_read_perms : 'a Bin_prot.Read.reader ‑> 'a perms Bin_prot.Read.reader
val __bin_read_perms__ : 'a Bin_prot.Read.reader ‑> (Core_kernel__.Import.int ‑> 'a perms) Bin_prot.Read.reader
val bin_reader_perms : 'a Bin_prot.Type_class.reader ‑> 'a perms Bin_prot.Type_class.reader
val bin_size_perms : 'a Bin_prot.Size.sizer ‑> 'a perms Bin_prot.Size.sizer
val bin_write_perms : 'a Bin_prot.Write.writer ‑> 'a perms Bin_prot.Write.writer
val bin_writer_perms : 'a Bin_prot.Type_class.writer ‑> 'a perms Bin_prot.Type_class.writer
val bin_shape_perms : Bin_prot.Shape.t ‑> Bin_prot.Shape.t
include Result.Export
val is_ok : (_, _) Base.Result.t ‑> bool
val is_error : (_, _) Base.Result.t ‑> bool
module Array = Core_kernel__.Core_array
module Char = Core_kernel__.Core_char
module Comparator : sig ... end
module Exn = Base.Exn
module Field = Core_kernel__.Import.Field
module Hashtbl = Core_kernel__.Core_hashtbl
module Int = Core_kernel__.Core_int
module Int32 = Core_kernel__.Core_int32
module Int63 = Core_kernel__.Core_int63
module Int64 = Core_kernel__.Core_int64
module Lazy = Core_kernel__.Core_lazy
module Linked_queue : sig ... end
This module extends the Base.Queue
module with bin_io support. As a reminder, the
Base.Queue
module is a wrapper around OCaml's standard Queue
module that follows
Base idioms and adds some functions.
module Map = Core_kernel__.Core_map
module Nativeint = Core_kernel__.Core_nativeint
module Ordering : sig ... end
module Random = Core_kernel__.Core_random
module Ref : sig ... end
module Result : sig ... end
module Set = Core_kernel__.Core_set
module Sexp = Core_kernel__.Core_sexp
module Staged = Base.Staged
module String = Core_kernel__.Core_string
module Type_equal : sig ... end
module List = Core_kernel__.Std_internal.List
exception
Bug of Core_kernel__.Import.string
exception
C_malloc_exn of Core_kernel__.Import.int * Core_kernel__.Import.int
Raised if malloc in C bindings fail (errno * size).
val phys_same : 'a ‑> 'b ‑> bool
phys_same
is like phys_equal
, but with a more general type. phys_same
is useful
when dealing with existential types, when one has a packed value and an unpacked value
that one wants to check are physically equal. One can't use phys_equal
in such a
situation because the types are different.
val error : ?strict:unit ‑> string ‑> 'a ‑> ('a ‑> Base.Sexp.t) ‑> 'b Or_error.t
val error_s : Base.Sexp.t ‑> 'a Or_error.t
val failwithp : ?strict:Core_kernel__.Import.unit ‑> Lexing.position ‑> Core_kernel__.Import.string ‑> 'a ‑> ('a ‑> Core_kernel__.Import.Sexp.t) ‑> 'b
val failwiths : ?strict:Core_kernel__.Import.unit ‑> ?here:Lexing.position ‑> Core_kernel__.Import.string ‑> 'a ‑> ('a ‑> Core_kernel__.Import.Sexp.t) ‑> 'b
val force : 'a Base.Lazy.t ‑> 'a
val fprintf : Pervasives.out_channel ‑> ('a, Pervasives.out_channel, unit) Pervasives.format ‑> 'a
val is_none : 'a Option.t ‑> bool
val is_some : 'a Option.t ‑> bool
val ok_exn : 'a Or_error.t ‑> 'a
val raise_s : Base.Sexp.t ‑> 'a
val stage : 'a ‑> 'a Staged.t
val unstage : 'a Staged.t ‑> 'a
val with_return : ('a Core_kernel__.Import.With_return.return ‑> 'a) ‑> 'a
val with_return_option : ('a Core_kernel__.Import.With_return.return ‑> unit) ‑> 'a option
include Typerep_lib.Std_internal
type-safe runtime type introspection
val typerep_of_int : int Typerep.t
val typerep_of_int32 : int32 Typerep.t
val typerep_of_int64 : int64 Typerep.t
val typerep_of_nativeint : nativeint Typerep.t
val typerep_of_char : char Typerep.t
val typerep_of_float : float Typerep.t
val typerep_of_string : string Typerep.t
val typerep_of_bool : bool Typerep.t
val typerep_of_unit : unit Typerep.t
val value_tuple0 : tuple0
val typename_of_int : int Typerep_lib.Typename.t
val typename_of_int32 : int32 Typerep_lib.Typename.t
val typename_of_int64 : int64 Typerep_lib.Typename.t
val typename_of_nativeint : nativeint Typerep_lib.Typename.t
val typename_of_char : char Typerep_lib.Typename.t
val typename_of_float : float Typerep_lib.Typename.t
val typename_of_string : string Typerep_lib.Typename.t
val typename_of_bool : bool Typerep_lib.Typename.t
val typename_of_unit : unit Typerep_lib.Typename.t
val typename_of_option : 'a Typerep_lib.Typename.t ‑> 'a option Typerep_lib.Typename.t
val typename_of_list : 'a Typerep_lib.Typename.t ‑> 'a list Typerep_lib.Typename.t
val typename_of_array : 'a Typerep_lib.Typename.t ‑> 'a array Typerep_lib.Typename.t
val typename_of_lazy_t : 'a Typerep_lib.Typename.t ‑> 'a lazy_t Typerep_lib.Typename.t
val typename_of_ref : 'a Typerep_lib.Typename.t ‑> 'a Pervasives.ref Typerep_lib.Typename.t
val typename_of_function : 'a Typerep_lib.Typename.t ‑> 'b Typerep_lib.Typename.t ‑> ('a ‑> 'b) Typerep_lib.Typename.t
val typename_of_tuple0 : tuple0 Typerep_lib.Typename.t
val typename_of_tuple2 : 'a Typerep_lib.Typename.t ‑> 'b Typerep_lib.Typename.t ‑> ('a * 'b) Typerep_lib.Typename.t
val typename_of_tuple3 : 'a Typerep_lib.Typename.t ‑> 'b Typerep_lib.Typename.t ‑> 'c Typerep_lib.Typename.t ‑> ('a * 'b * 'c) Typerep_lib.Typename.t
val typename_of_tuple4 : 'a Typerep_lib.Typename.t ‑> 'b Typerep_lib.Typename.t ‑> 'c Typerep_lib.Typename.t ‑> 'd Typerep_lib.Typename.t ‑> ('a * 'b * 'c * 'd) Typerep_lib.Typename.t
val typename_of_tuple5 : 'a Typerep_lib.Typename.t ‑> 'b Typerep_lib.Typename.t ‑> 'c Typerep_lib.Typename.t ‑> 'd Typerep_lib.Typename.t ‑> 'e Typerep_lib.Typename.t ‑> ('a * 'b * 'c * 'd * 'e) Typerep_lib.Typename.t
include sig ... end with type a array := a Core_kernel__.Import.array with type bool := Core_kernel__.Import.bool with type char := Core_kernel__.Import.char with type float := Core_kernel__.Import.float with type int := Core_kernel__.Import.int with type int32 := Core_kernel__.Import.int32 with type int64 := Core_kernel__.Import.int64 with type a list := a Core_kernel__.Import.list with type nativeint := Core_kernel__.Import.nativeint with type a option := a Core_kernel__.Import.option with type string := Core_kernel__.Import.string with type a lazy_t := a lazy_t with type a ref := a ref with type unit := Core_kernel__.Import.unit
include sig ... end
val typerep_of_array : 'a Typerep_lib.Std.Typerep.t ‑> 'a array Typerep_lib.Std.Typerep.t
val typename_of_array : 'a Typerep_lib.Std.Typename.t ‑> 'a array Typerep_lib.Std.Typename.t
val array_of_sexp : (Sexplib.Sexp.t ‑> 'a) ‑> Sexplib.Sexp.t ‑> 'a array
val sexp_of_array : ('a ‑> Sexplib.Sexp.t) ‑> 'a array ‑> Sexplib.Sexp.t
val compare_array : ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a array ‑> 'a array ‑> Core_kernel__.Import.int
val bin_array : 'a Bin_prot.Type_class.t ‑> 'a array Bin_prot.Type_class.t
val bin_read_array : 'a Bin_prot.Read.reader ‑> 'a array Bin_prot.Read.reader
val __bin_read_array__ : 'a Bin_prot.Read.reader ‑> (Core_kernel__.Import.int ‑> 'a array) Bin_prot.Read.reader
val bin_reader_array : 'a Bin_prot.Type_class.reader ‑> 'a array Bin_prot.Type_class.reader
val bin_size_array : 'a Bin_prot.Size.sizer ‑> 'a array Bin_prot.Size.sizer
val bin_write_array : 'a Bin_prot.Write.writer ‑> 'a array Bin_prot.Write.writer
val bin_writer_array : 'a Bin_prot.Type_class.writer ‑> 'a array Bin_prot.Type_class.writer
val bin_shape_array : Bin_prot.Shape.t ‑> Bin_prot.Shape.t
include sig ... end
val typerep_of_bool : bool Typerep_lib.Std.Typerep.t
val typename_of_bool : bool Typerep_lib.Std.Typename.t
val bool_of_sexp : Sexplib.Sexp.t ‑> bool
val sexp_of_bool : bool ‑> Sexplib.Sexp.t
val hash_fold_bool : Ppx_hash_lib.Std.Hash.state ‑> bool ‑> Ppx_hash_lib.Std.Hash.state
val hash_bool : bool ‑> Ppx_hash_lib.Std.Hash.hash_value
val compare_bool : bool ‑> bool ‑> Core_kernel__.Import.int
val bin_bool : bool Bin_prot.Type_class.t
val bin_read_bool : bool Bin_prot.Read.reader
val __bin_read_bool__ : (Core_kernel__.Import.int ‑> bool) Bin_prot.Read.reader
val bin_reader_bool : bool Bin_prot.Type_class.reader
val bin_size_bool : bool Bin_prot.Size.sizer
val bin_write_bool : bool Bin_prot.Write.writer
val bin_writer_bool : bool Bin_prot.Type_class.writer
val bin_shape_bool : Bin_prot.Shape.t
include sig ... end
val typerep_of_char : char Typerep_lib.Std.Typerep.t
val typename_of_char : char Typerep_lib.Std.Typename.t
val char_of_sexp : Sexplib.Sexp.t ‑> char
val sexp_of_char : char ‑> Sexplib.Sexp.t
val hash_fold_char : Ppx_hash_lib.Std.Hash.state ‑> char ‑> Ppx_hash_lib.Std.Hash.state
val hash_char : char ‑> Ppx_hash_lib.Std.Hash.hash_value
val compare_char : char ‑> char ‑> Core_kernel__.Import.int
val bin_char : char Bin_prot.Type_class.t
val bin_read_char : char Bin_prot.Read.reader
val __bin_read_char__ : (Core_kernel__.Import.int ‑> char) Bin_prot.Read.reader
val bin_reader_char : char Bin_prot.Type_class.reader
val bin_size_char : char Bin_prot.Size.sizer
val bin_write_char : char Bin_prot.Write.writer
val bin_writer_char : char Bin_prot.Type_class.writer
val bin_shape_char : Bin_prot.Shape.t
include sig ... end
val typerep_of_float : float Typerep_lib.Std.Typerep.t
val typename_of_float : float Typerep_lib.Std.Typename.t
val float_of_sexp : Sexplib.Sexp.t ‑> float
val sexp_of_float : float ‑> Sexplib.Sexp.t
val hash_fold_float : Ppx_hash_lib.Std.Hash.state ‑> float ‑> Ppx_hash_lib.Std.Hash.state
val hash_float : float ‑> Ppx_hash_lib.Std.Hash.hash_value
val compare_float : float ‑> float ‑> Core_kernel__.Import.int
val bin_float : float Bin_prot.Type_class.t
val bin_read_float : float Bin_prot.Read.reader
val __bin_read_float__ : (Core_kernel__.Import.int ‑> float) Bin_prot.Read.reader
val bin_reader_float : float Bin_prot.Type_class.reader
val bin_size_float : float Bin_prot.Size.sizer
val bin_write_float : float Bin_prot.Write.writer
val bin_writer_float : float Bin_prot.Type_class.writer
val bin_shape_float : Bin_prot.Shape.t
include sig ... end
val typerep_of_int : int Typerep_lib.Std.Typerep.t
val typename_of_int : int Typerep_lib.Std.Typename.t
val int_of_sexp : Sexplib.Sexp.t ‑> int
val sexp_of_int : int ‑> Sexplib.Sexp.t
val hash_fold_int : Ppx_hash_lib.Std.Hash.state ‑> int ‑> Ppx_hash_lib.Std.Hash.state
val hash_int : int ‑> Ppx_hash_lib.Std.Hash.hash_value
val bin_int : int Bin_prot.Type_class.t
val bin_read_int : int Bin_prot.Read.reader
val __bin_read_int__ : (int ‑> int) Bin_prot.Read.reader
val bin_reader_int : int Bin_prot.Type_class.reader
val bin_size_int : int Bin_prot.Size.sizer
val bin_write_int : int Bin_prot.Write.writer
val bin_writer_int : int Bin_prot.Type_class.writer
val bin_shape_int : Bin_prot.Shape.t
include sig ... end
val typerep_of_int32 : int32 Typerep_lib.Std.Typerep.t
val typename_of_int32 : int32 Typerep_lib.Std.Typename.t
val int32_of_sexp : Sexplib.Sexp.t ‑> int32
val sexp_of_int32 : int32 ‑> Sexplib.Sexp.t
val hash_fold_int32 : Ppx_hash_lib.Std.Hash.state ‑> int32 ‑> Ppx_hash_lib.Std.Hash.state
val hash_int32 : int32 ‑> Ppx_hash_lib.Std.Hash.hash_value
val bin_int32 : int32 Bin_prot.Type_class.t
val bin_read_int32 : int32 Bin_prot.Read.reader
val __bin_read_int32__ : (int ‑> int32) Bin_prot.Read.reader
val bin_reader_int32 : int32 Bin_prot.Type_class.reader
val bin_size_int32 : int32 Bin_prot.Size.sizer
val bin_write_int32 : int32 Bin_prot.Write.writer
val bin_writer_int32 : int32 Bin_prot.Type_class.writer
val bin_shape_int32 : Bin_prot.Shape.t
include sig ... end
val typerep_of_int64 : int64 Typerep_lib.Std.Typerep.t
val typename_of_int64 : int64 Typerep_lib.Std.Typename.t
val int64_of_sexp : Sexplib.Sexp.t ‑> int64
val sexp_of_int64 : int64 ‑> Sexplib.Sexp.t
val hash_fold_int64 : Ppx_hash_lib.Std.Hash.state ‑> int64 ‑> Ppx_hash_lib.Std.Hash.state
val hash_int64 : int64 ‑> Ppx_hash_lib.Std.Hash.hash_value
val bin_int64 : int64 Bin_prot.Type_class.t
val bin_read_int64 : int64 Bin_prot.Read.reader
val __bin_read_int64__ : (int ‑> int64) Bin_prot.Read.reader
val bin_reader_int64 : int64 Bin_prot.Type_class.reader
val bin_size_int64 : int64 Bin_prot.Size.sizer
val bin_write_int64 : int64 Bin_prot.Write.writer
val bin_writer_int64 : int64 Bin_prot.Type_class.writer
val bin_shape_int64 : Bin_prot.Shape.t
include sig ... end
val typerep_of_lazy_t : 'a Typerep_lib.Std.Typerep.t ‑> 'a lazy_t Typerep_lib.Std.Typerep.t
val typename_of_lazy_t : 'a Typerep_lib.Std.Typename.t ‑> 'a lazy_t Typerep_lib.Std.Typename.t
val lazy_t_of_sexp : (Sexplib.Sexp.t ‑> 'a) ‑> Sexplib.Sexp.t ‑> 'a lazy_t
val sexp_of_lazy_t : ('a ‑> Sexplib.Sexp.t) ‑> 'a lazy_t ‑> Sexplib.Sexp.t
val hash_fold_lazy_t : (Ppx_hash_lib.Std.Hash.state ‑> 'a ‑> Ppx_hash_lib.Std.Hash.state) ‑> Ppx_hash_lib.Std.Hash.state ‑> 'a lazy_t ‑> Ppx_hash_lib.Std.Hash.state
val bin_lazy_t : 'a Bin_prot.Type_class.t ‑> 'a lazy_t Bin_prot.Type_class.t
val bin_read_lazy_t : 'a Bin_prot.Read.reader ‑> 'a lazy_t Bin_prot.Read.reader
val __bin_read_lazy_t__ : 'a Bin_prot.Read.reader ‑> (int ‑> 'a lazy_t) Bin_prot.Read.reader
val bin_reader_lazy_t : 'a Bin_prot.Type_class.reader ‑> 'a lazy_t Bin_prot.Type_class.reader
val bin_size_lazy_t : 'a Bin_prot.Size.sizer ‑> 'a lazy_t Bin_prot.Size.sizer
val bin_write_lazy_t : 'a Bin_prot.Write.writer ‑> 'a lazy_t Bin_prot.Write.writer
val bin_writer_lazy_t : 'a Bin_prot.Type_class.writer ‑> 'a lazy_t Bin_prot.Type_class.writer
val bin_shape_lazy_t : Bin_prot.Shape.t ‑> Bin_prot.Shape.t
include sig ... end
val typerep_of_list : 'a Typerep_lib.Std.Typerep.t ‑> 'a list Typerep_lib.Std.Typerep.t
val typename_of_list : 'a Typerep_lib.Std.Typename.t ‑> 'a list Typerep_lib.Std.Typename.t
val list_of_sexp : (Sexplib.Sexp.t ‑> 'a) ‑> Sexplib.Sexp.t ‑> 'a list
val sexp_of_list : ('a ‑> Sexplib.Sexp.t) ‑> 'a list ‑> Sexplib.Sexp.t
val hash_fold_list : (Ppx_hash_lib.Std.Hash.state ‑> 'a ‑> Ppx_hash_lib.Std.Hash.state) ‑> Ppx_hash_lib.Std.Hash.state ‑> 'a list ‑> Ppx_hash_lib.Std.Hash.state
val bin_list : 'a Bin_prot.Type_class.t ‑> 'a list Bin_prot.Type_class.t
val bin_read_list : 'a Bin_prot.Read.reader ‑> 'a list Bin_prot.Read.reader
val __bin_read_list__ : 'a Bin_prot.Read.reader ‑> (int ‑> 'a list) Bin_prot.Read.reader
val bin_reader_list : 'a Bin_prot.Type_class.reader ‑> 'a list Bin_prot.Type_class.reader
val bin_size_list : 'a Bin_prot.Size.sizer ‑> 'a list Bin_prot.Size.sizer
val bin_write_list : 'a Bin_prot.Write.writer ‑> 'a list Bin_prot.Write.writer
val bin_writer_list : 'a Bin_prot.Type_class.writer ‑> 'a list Bin_prot.Type_class.writer
val bin_shape_list : Bin_prot.Shape.t ‑> Bin_prot.Shape.t
include sig ... end
val typerep_of_nativeint : nativeint Typerep_lib.Std.Typerep.t
val typename_of_nativeint : nativeint Typerep_lib.Std.Typename.t
val nativeint_of_sexp : Sexplib.Sexp.t ‑> nativeint
val sexp_of_nativeint : nativeint ‑> Sexplib.Sexp.t
val hash_fold_nativeint : Ppx_hash_lib.Std.Hash.state ‑> nativeint ‑> Ppx_hash_lib.Std.Hash.state
val hash_nativeint : nativeint ‑> Ppx_hash_lib.Std.Hash.hash_value
val bin_nativeint : nativeint Bin_prot.Type_class.t
val bin_read_nativeint : nativeint Bin_prot.Read.reader
val __bin_read_nativeint__ : (int ‑> nativeint) Bin_prot.Read.reader
val bin_reader_nativeint : nativeint Bin_prot.Type_class.reader
val bin_size_nativeint : nativeint Bin_prot.Size.sizer
val bin_write_nativeint : nativeint Bin_prot.Write.writer
val bin_writer_nativeint : nativeint Bin_prot.Type_class.writer
val bin_shape_nativeint : Bin_prot.Shape.t
include sig ... end
val typerep_of_option : 'a Typerep_lib.Std.Typerep.t ‑> 'a option Typerep_lib.Std.Typerep.t
val typename_of_option : 'a Typerep_lib.Std.Typename.t ‑> 'a option Typerep_lib.Std.Typename.t
val option_of_sexp : (Sexplib.Sexp.t ‑> 'a) ‑> Sexplib.Sexp.t ‑> 'a option
val sexp_of_option : ('a ‑> Sexplib.Sexp.t) ‑> 'a option ‑> Sexplib.Sexp.t
val hash_fold_option : (Ppx_hash_lib.Std.Hash.state ‑> 'a ‑> Ppx_hash_lib.Std.Hash.state) ‑> Ppx_hash_lib.Std.Hash.state ‑> 'a option ‑> Ppx_hash_lib.Std.Hash.state
val bin_option : 'a Bin_prot.Type_class.t ‑> 'a option Bin_prot.Type_class.t
val bin_read_option : 'a Bin_prot.Read.reader ‑> 'a option Bin_prot.Read.reader
val __bin_read_option__ : 'a Bin_prot.Read.reader ‑> (int ‑> 'a option) Bin_prot.Read.reader
val bin_reader_option : 'a Bin_prot.Type_class.reader ‑> 'a option Bin_prot.Type_class.reader
val bin_size_option : 'a Bin_prot.Size.sizer ‑> 'a option Bin_prot.Size.sizer
val bin_write_option : 'a Bin_prot.Write.writer ‑> 'a option Bin_prot.Write.writer
val bin_writer_option : 'a Bin_prot.Type_class.writer ‑> 'a option Bin_prot.Type_class.writer
val bin_shape_option : Bin_prot.Shape.t ‑> Bin_prot.Shape.t
include sig ... end
val typerep_of_string : string Typerep_lib.Std.Typerep.t
val typename_of_string : string Typerep_lib.Std.Typename.t
val string_of_sexp : Sexplib.Sexp.t ‑> string
val sexp_of_string : string ‑> Sexplib.Sexp.t
val hash_fold_string : Ppx_hash_lib.Std.Hash.state ‑> string ‑> Ppx_hash_lib.Std.Hash.state
val hash_string : string ‑> Ppx_hash_lib.Std.Hash.hash_value
val bin_string : string Bin_prot.Type_class.t
val bin_read_string : string Bin_prot.Read.reader
val __bin_read_string__ : (int ‑> string) Bin_prot.Read.reader
val bin_reader_string : string Bin_prot.Type_class.reader
val bin_size_string : string Bin_prot.Size.sizer
val bin_write_string : string Bin_prot.Write.writer
val bin_writer_string : string Bin_prot.Type_class.writer
val bin_shape_string : Bin_prot.Shape.t
include sig ... end
val typerep_of_ref : 'a Typerep_lib.Std.Typerep.t ‑> 'a ref Typerep_lib.Std.Typerep.t
val typename_of_ref : 'a Typerep_lib.Std.Typename.t ‑> 'a ref Typerep_lib.Std.Typename.t
val ref_of_sexp : (Sexplib.Sexp.t ‑> 'a) ‑> Sexplib.Sexp.t ‑> 'a ref
val sexp_of_ref : ('a ‑> Sexplib.Sexp.t) ‑> 'a ref ‑> Sexplib.Sexp.t
val bin_ref : 'a Bin_prot.Type_class.t ‑> 'a ref Bin_prot.Type_class.t
val bin_read_ref : 'a Bin_prot.Read.reader ‑> 'a ref Bin_prot.Read.reader
val __bin_read_ref__ : 'a Bin_prot.Read.reader ‑> (int ‑> 'a ref) Bin_prot.Read.reader
val bin_reader_ref : 'a Bin_prot.Type_class.reader ‑> 'a ref Bin_prot.Type_class.reader
val bin_size_ref : 'a Bin_prot.Size.sizer ‑> 'a ref Bin_prot.Size.sizer
val bin_write_ref : 'a Bin_prot.Write.writer ‑> 'a ref Bin_prot.Write.writer
val bin_writer_ref : 'a Bin_prot.Type_class.writer ‑> 'a ref Bin_prot.Type_class.writer
val bin_shape_ref : Bin_prot.Shape.t ‑> Bin_prot.Shape.t
include sig ... end
val typerep_of_unit : unit Typerep_lib.Std.Typerep.t
val typename_of_unit : unit Typerep_lib.Std.Typename.t
val unit_of_sexp : Sexplib.Sexp.t ‑> unit
val sexp_of_unit : unit ‑> Sexplib.Sexp.t
val hash_fold_unit : Ppx_hash_lib.Std.Hash.state ‑> unit ‑> Ppx_hash_lib.Std.Hash.state
val hash_unit : unit ‑> Ppx_hash_lib.Std.Hash.hash_value
val bin_unit : unit Bin_prot.Type_class.t
val bin_read_unit : unit Bin_prot.Read.reader
val __bin_read_unit__ : (int ‑> unit) Bin_prot.Read.reader
val bin_reader_unit : unit Bin_prot.Type_class.reader
val bin_size_unit : unit Bin_prot.Size.sizer
val bin_write_unit : unit Bin_prot.Write.writer
val bin_writer_unit : unit Bin_prot.Type_class.writer
val bin_shape_unit : Bin_prot.Shape.t
include sig ... end
val typerep_of_float_array : float_array Typerep_lib.Std.Typerep.t
val typename_of_float_array : float_array Typerep_lib.Std.Typename.t
val float_array_of_sexp : Sexplib.Sexp.t ‑> float_array
val sexp_of_float_array : float_array ‑> Sexplib.Sexp.t
val compare_float_array : float_array ‑> float_array ‑> int
val bin_float_array : float_array Bin_prot.Type_class.t
val bin_read_float_array : float_array Bin_prot.Read.reader
val __bin_read_float_array__ : (int ‑> float_array) Bin_prot.Read.reader
val bin_reader_float_array : float_array Bin_prot.Type_class.reader
val bin_size_float_array : float_array Bin_prot.Size.sizer
val bin_write_float_array : float_array Bin_prot.Write.writer
val bin_writer_float_array : float_array Bin_prot.Type_class.writer
val bin_shape_float_array : Bin_prot.Shape.t
val sexp_of_exn : Exn.t ‑> Base__.Sexplib.Sexp.t
module Typename_of_sexp_array = Core_kernel__.Std_internal.Typename_of_sexp_array
val typename_of_sexp_array : 'a Typerep_lib.Typename.t ‑> 'a sexp_array Typerep_lib.Typename.t
val typerep_of_sexp_array : a. 'a Typerep_lib.Std.Typerep.t ‑> 'a sexp_array Typerep_lib.Std.Typerep.t
val compare_sexp_array : a. ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a sexp_array ‑> 'a sexp_array ‑> Core_kernel__.Import.int
val bin_shape_sexp_array : Bin_prot.Shape.t ‑> Bin_prot.Shape.t
val bin_size_sexp_array : 'a Bin_prot.Size.sizer ‑> 'a Core_kernel__.Import.array ‑> int
val bin_write_sexp_array : 'a Bin_prot.Write.writer ‑> Bin_prot.Common.buf ‑> pos:Bin_prot.Common.pos ‑> 'a Core_kernel__.Import.array ‑> Bin_prot.Common.pos
val bin_writer_sexp_array : 'a Bin_prot.Type_class.writer ‑> 'a Core_kernel__.Import.array Bin_prot.Type_class.writer
val __bin_read_sexp_array__ : 'a Bin_prot.Read.reader ‑> Bin_prot.Common.buf ‑> pos_ref:Bin_prot.Common.pos_ref ‑> Core_kernel__.Import.int ‑> 'a Core_kernel__.Import.array
val bin_read_sexp_array : 'a Bin_prot.Read.reader ‑> Bin_prot.Common.buf ‑> pos_ref:Bin_prot.Common.pos_ref ‑> 'a Core_kernel__.Import.array
val bin_reader_sexp_array : 'a Bin_prot.Type_class.reader ‑> 'a Core_kernel__.Import.array Bin_prot.Type_class.reader
val bin_sexp_array : 'a Bin_prot.Type_class.t ‑> 'a Core_kernel__.Import.array Bin_prot.Type_class.t
module Typename_of_sexp_bool = Core_kernel__.Std_internal.Typename_of_sexp_bool
val typename_of_sexp_bool : sexp_bool Typerep_lib.Typename.t
val typerep_of_sexp_bool : sexp_bool Typerep_lib.Std.Typerep.t
val hash_fold_sexp_bool : Ppx_hash_lib.Std.Hash.state ‑> sexp_bool ‑> Ppx_hash_lib.Std.Hash.state
val hash_sexp_bool : sexp_bool ‑> Ppx_hash_lib.Std.Hash.hash_value
val compare_sexp_bool : sexp_bool ‑> sexp_bool ‑> Core_kernel__.Import.int
val bin_shape_sexp_bool : Bin_prot.Shape.t
val bin_size_sexp_bool : Core_kernel__.Import.bool Bin_prot.Size.sizer
val bin_write_sexp_bool : Core_kernel__.Import.bool Bin_prot.Write.writer
val bin_writer_sexp_bool : Core_kernel__.Import.bool Bin_prot.Type_class.writer
val __bin_read_sexp_bool__ : (Core_kernel__.Import.int ‑> Core_kernel__.Import.bool) Bin_prot.Read.reader
val bin_read_sexp_bool : Core_kernel__.Import.bool Bin_prot.Read.reader
val bin_reader_sexp_bool : Core_kernel__.Import.bool Bin_prot.Type_class.reader
val bin_sexp_bool : Core_kernel__.Import.bool Bin_prot.Type_class.t
module Typename_of_sexp_list = Core_kernel__.Std_internal.Typename_of_sexp_list
val typename_of_sexp_list : 'a Typerep_lib.Typename.t ‑> 'a sexp_list Typerep_lib.Typename.t
val typerep_of_sexp_list : a. 'a Typerep_lib.Std.Typerep.t ‑> 'a sexp_list Typerep_lib.Std.Typerep.t
val hash_fold_sexp_list : a. (Ppx_hash_lib.Std.Hash.state ‑> 'a ‑> Ppx_hash_lib.Std.Hash.state) ‑> Ppx_hash_lib.Std.Hash.state ‑> 'a sexp_list ‑> Ppx_hash_lib.Std.Hash.state
val compare_sexp_list : a. ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a sexp_list ‑> 'a sexp_list ‑> Core_kernel__.Import.int
val bin_shape_sexp_list : Bin_prot.Shape.t ‑> Bin_prot.Shape.t
val bin_size_sexp_list : 'a Bin_prot.Size.sizer ‑> 'a Core_kernel__.Import.list ‑> int
val bin_write_sexp_list : 'a Bin_prot.Write.writer ‑> Bin_prot.Common.buf ‑> pos:Bin_prot.Common.pos ‑> 'a Core_kernel__.Import.list ‑> Bin_prot.Common.pos
val bin_writer_sexp_list : 'a Bin_prot.Type_class.writer ‑> 'a Core_kernel__.Import.list Bin_prot.Type_class.writer
val __bin_read_sexp_list__ : 'a Bin_prot.Read.reader ‑> Bin_prot.Common.buf ‑> pos_ref:Bin_prot.Common.pos_ref ‑> Core_kernel__.Import.int ‑> 'a Core_kernel__.Import.list
val bin_read_sexp_list : 'a Bin_prot.Read.reader ‑> Bin_prot.Common.buf ‑> pos_ref:Bin_prot.Common.pos_ref ‑> 'a Core_kernel__.Import.list
val bin_reader_sexp_list : 'a Bin_prot.Type_class.reader ‑> 'a Core_kernel__.Import.list Bin_prot.Type_class.reader
val bin_sexp_list : 'a Bin_prot.Type_class.t ‑> 'a Core_kernel__.Import.list Bin_prot.Type_class.t
module Typename_of_sexp_option = Core_kernel__.Std_internal.Typename_of_sexp_option
val typename_of_sexp_option : 'a Typerep_lib.Typename.t ‑> 'a sexp_option Typerep_lib.Typename.t
val typerep_of_sexp_option : a. 'a Typerep_lib.Std.Typerep.t ‑> 'a sexp_option Typerep_lib.Std.Typerep.t
val hash_fold_sexp_option : a. (Ppx_hash_lib.Std.Hash.state ‑> 'a ‑> Ppx_hash_lib.Std.Hash.state) ‑> Ppx_hash_lib.Std.Hash.state ‑> 'a sexp_option ‑> Ppx_hash_lib.Std.Hash.state
val compare_sexp_option : a. ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a sexp_option ‑> 'a sexp_option ‑> Core_kernel__.Import.int
val bin_shape_sexp_option : Bin_prot.Shape.t ‑> Bin_prot.Shape.t
val bin_size_sexp_option : 'a Bin_prot.Size.sizer ‑> 'a Core_kernel__.Import.option ‑> int
val bin_write_sexp_option : 'a Bin_prot.Write.writer ‑> Bin_prot.Common.buf ‑> pos:Bin_prot.Common.pos ‑> 'a Core_kernel__.Import.option ‑> Bin_prot.Common.pos
val bin_writer_sexp_option : 'a Bin_prot.Type_class.writer ‑> 'a Core_kernel__.Import.option Bin_prot.Type_class.writer
val __bin_read_sexp_option__ : 'a Bin_prot.Read.reader ‑> Bin_prot.Common.buf ‑> pos_ref:Bin_prot.Common.pos_ref ‑> Core_kernel__.Import.int ‑> 'a Core_kernel__.Import.option
val bin_read_sexp_option : 'a Bin_prot.Read.reader ‑> Bin_prot.Common.buf ‑> pos_ref:Bin_prot.Common.pos_ref ‑> 'a Core_kernel__.Import.option
val bin_reader_sexp_option : 'a Bin_prot.Type_class.reader ‑> 'a Core_kernel__.Import.option Bin_prot.Type_class.reader
val bin_sexp_option : 'a Bin_prot.Type_class.t ‑> 'a Core_kernel__.Import.option Bin_prot.Type_class.t
module Typename_of_sexp_opaque = Core_kernel__.Std_internal.Typename_of_sexp_opaque
val typename_of_sexp_opaque : 'a Typerep_lib.Typename.t ‑> 'a sexp_opaque Typerep_lib.Typename.t
val typerep_of_sexp_opaque : a. 'a Typerep_lib.Std.Typerep.t ‑> 'a sexp_opaque Typerep_lib.Std.Typerep.t
val hash_fold_sexp_opaque : a. (Ppx_hash_lib.Std.Hash.state ‑> 'a ‑> Ppx_hash_lib.Std.Hash.state) ‑> Ppx_hash_lib.Std.Hash.state ‑> 'a sexp_opaque ‑> Ppx_hash_lib.Std.Hash.state
val compare_sexp_opaque : a. ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a sexp_opaque ‑> 'a sexp_opaque ‑> Core_kernel__.Import.int
val bin_shape_sexp_opaque : Bin_prot.Shape.t ‑> Bin_prot.Shape.t
val bin_writer_sexp_opaque : 'a Bin_prot.Type_class.writer ‑> 'a Bin_prot.Type_class.writer
val __bin_read_sexp_opaque__ : 'a ‑> 'b ‑> pos_ref:Bin_prot.Common.pos ref ‑> 'c ‑> 'd
val bin_reader_sexp_opaque : 'a Bin_prot.Type_class.reader ‑> 'a Bin_prot.Type_class.reader
val bin_sexp_opaque : 'a Bin_prot.Type_class.t ‑> 'a Bin_prot.Type_class.t
module Applicative = Core_kernel__.Import.Applicative
module Arg = Core_kernel__.Core_arg
module Avltree = Core_kernel__.Import.Avltree
module Backtrace = Core_kernel__.Import.Backtrace
module Bin_prot = Core_kernel__.Core_bin_prot
module Binable : sig ... end
Module types and utilities for dealing with types that support the bin-io binary encoding.
module Binary_packing : sig ... end
Packs and unpacks various types of integers into and from strings.
module Binary_search = Core_kernel__.Import.Binary_search
module Binary_searchable : sig ... end
module Bounded_index : sig ... end
module Bounded_int_table : sig ... end
A Bounded_int_table
is a table whose keys can be mapped to integers in a fixed
range, 0 ... num_keys-1, where num_keys
is specified at table-creation time. The
purpose of Bounded_int_table
is to be faster than Hashtbl
in situations where one
is willing to pay a space cost for the speed.
module Bucket : sig ... end
module Bus : sig ... end
A Bus
is a publisher/subscriber system within the memory space of the program. A
bus has a mutable set of subscribers, which can be modified using subscribe_exn
and
unsubscribe
.
module Bytes = Core_kernel__.Core_bytes
module Commutative_group = Core_kernel__.Import.Commutative_group
module Comparable : sig ... end
module Container : sig ... end
module Day_of_week : sig ... end
module Deriving_hash : sig ... end
module Ephemeron = Core_kernel__.Core_ephemeron
module Equal = Core_kernel__.Import.Equal
module Expect_test_config = Expect_test_config
module Fdeque : sig ... end
A simple polymorphic functional double-ended queue. Use this if you need a queue-like
data structure that provides enqueue and dequeue accessors on both ends. For
strictly first-in, first-out access, see Fqueue
.
module Fheap : sig ... end
Functional Heap implementation based on pairing-heap algorithm and immutable data structures. See more info at http://en.wikipedia.org/wiki/Pairing_heap.
module Float : sig ... end
module Float_with_finite_only_serialization : sig ... end
An alias to the Float.t
type that causes the sexp and bin-io serializers to fail
when provided with nan
or infinity
.
module Floatable = Core_kernel__.Import.Floatable
module Fn : sig ... end
module Force_once : sig ... end
module Fqueue : sig ... end
A simple polymorphic functional queue. Use this data structure for strictly first-in,
first-out access to a sequence of values. For a similar data structure with enqueue
and dequeue accessors on both ends of a sequence, see Fdeque
.
module Gc = Core_kernel__.Core_gc
module Hash = Core_kernel__.Import.Hash
module Hash_heap : sig ... end
A hash-heap is a combination of a heap and a hashtbl that supports constant time lookup, and log(n) time removal and replacement of elements in addition to the normal heap operations.
module Hash_queue : sig ... end
module Hashable : sig ... end
module Hashtbl_intf = Core_hashtbl_intf
module Heap_block = Core_kernel__.Import.Heap_block
module Hexdump : sig ... end
module Host_and_port : sig ... end
module Immediate_option : sig ... end
module In_channel = Core_kernel__.Import.In_channel
module Info : sig ... end
module Int_conversions = Base.Not_exposed_properly.Int_conversions
module Int_set : sig ... end
An implementation of compressed integer sets using lists of integer ranges. Operations such as adding and membership are O(n) where n is the number of contigous ranges in the set. For data that is mostly serial, n should remain very small.
module Interfaces : sig ... end
module Invariant = Core_kernel__.Import.Invariant
module Limiter : sig ... end
Implements a token bucket based throttling rate limiter. This module is useful for limiting network clients to a sensible query rate, or in any case where you have jobs that consume a scarce, but replenishable resource.
module Maybe_bound : sig ... end
This module extends the Base Maybe_bound
module with compare functions in the form
of As_lower_bound and As_upper_bound modules.
module Monad = Core_kernel__.Import.Monad
module Month : sig ... end
module Moption : sig ... end
A Moption
is a mutable option, like 'a option ref
, but with a more efficient
implementation; in particular, set_some
does not allocate.
module No_polymorphic_compare : sig ... end
Open this in modules where you don't want to accidentally use polymorphic comparison. Then, use Pervasives.(<), for example, where needed.
module Only_in_test : sig ... end
This module can be used to safely expose functions and values in signatures that should only be used in unit tests.
module Option_array : sig ... end
'a Option_array.t
is a compact representation of 'a option array
: it avoids
allocating heap objects representing Some x
, usually representing them with x
instead. It uses a special representation for None
that's guaranteed to never
collide with any representation of Some x
.
module Ordered_collection_common = Core_kernel__.Import.Ordered_collection_common
module Out_channel = Core_kernel__.Import.Out_channel
module Poly = Core_kernel__.Import.Poly
module Polymorphic_compare = Core_kernel__.Import.Polymorphic_compare
module Pool : sig ... end
module Pretty_printer = Core_kernel__.Import.Pretty_printer
module Printexc = Core_kernel__.Core_printexc
module Printf = Core_kernel__.Core_printf
module Queue = Core_kernel__.Core_queue
module Quickcheck : sig ... end
module Quickcheckable : sig ... end
module Robustly_comparable : sig ... end
module Rope : sig ... end
A rope is a standard data structure that represents a single string as a tree of
strings, allowing concatenation to do no work up front -- a string formed by many
Rope
concatenations followed by a to_string
needs only copy each input to the
output once, whereas a string expression looking like a ^ b ^ c ^ ... ^ z
must
create an intermediate string for every concatenation, and will copy the original data
into and out of short-lived temporary strings many times.
module Set_once : sig ... end
This module implements an option ref that starts out as None, and may be set only once. If one tries to set it twice a run time error is generated.
module Sexp_maybe = Core_kernel__.Core_sexp.Sexp_maybe
module Sexpable : sig ... end
module Source_code_position : sig ... end
module Splittable_random : sig ... end
A splittable pseudo-random number generator (SPRNG) functions like a PRNG in that it can be used as a stream of random values; it can also be "split" to produce a second, independent stream of random values. This module implements a splittable pseudo-random number generator that sacrifices cryptographic-quality randomness in favor of performance.
module Stable_unit_test : sig ... end
The tests generated by these functors are run like any other unit tests: by the inline test runner when the functor is applied.
module Stack = Core_kernel__.Core_stack
module String_id : sig ... end
module Stringable = Core_kernel__.Import.Stringable
module Substring : sig ... end
module Substring_intf : sig ... end
A substring is a contiguous set of characters within a string. Creating a substring does not copy. Therefore modifying the string also modifies the substring.
module Timing_wheel_ns : sig ... end
module Total_map : sig ... end
A ('key, 'value, cmp) Map.t
where every value of type 'key
is present.
module Tuple2 = Tuple.T2
module Tuple3 = Tuple.T3
module Type_immediacy : sig ... end
Witnesses that express whether a type's values are always, sometimes, or never immediate.
module Uniform_array : sig ... end
Same semantics as 'a Array.t
, except it's guaranteed that the representation array
is not tagged with Double_array_tag
, the tag for float arrays. This means it's
safer to use in the presence of Obj.magic
, but it's slower than normal Array
if
you use it with floats.
module Unit : sig ... end
Module for the type unit
. This is mostly useful for building functor arguments.
module Unit_of_time : sig ... end
Represents a unit of time, e.g. used by Time.Span.to_string_hum
. Comparison
respects Nanosecond < Microsecond < Millisecond < Second < Minute < Hour < Day.
module Validate = Core_kernel__.Import.Validate
module Weak = Core_kernel__.Core_weak
module Weak_pointer : sig ... end
A weak pointer is a pointer to a heap block that does not cause the heap block to remain live during garbage collection. If the block would otherwise remain live, then then the weak pointer remains pointed to the block. If the block is collected, then the weak pointer is cleared.
module With_return = Core_kernel__.Import.With_return
module Word_size = Core_kernel__.Import.Word_size
module type Unique_id = Unique_id.Id
include Core_kernel__.Std_common
module Caml = Caml
module Date : sig ... end
module Time = Core_kernel__.Time_float
module Time_ns : sig ... end
module Version_util : sig ... end
This module gives access to the same version/build information returned by
Command
-based executables when called with the -version
or -build-info
flags
by $0 version (-build-info | -version)
or $0 (-build-info | -version)
.
Here's how it works: we arrange for the build system to, at link time, include an
object file that defines symbols that version_util.ml uses to get the strings that
contain the information that this module provides. When building with OMake, our
OMakeroot runs build_info.sh to generate *.build_info.c with the symbols and that is
linked in.
module Core_hashtbl_intf : sig ... end
module Core_kernel_stable = Core_kernel__.Stable
module Core_map_intf : sig ... end
This module defines interfaces used in Core.Map
. See the documentation in
core_map.mli for a description of the approach.
module Core_set_intf : sig ... end
This module defines interfaces used in Core.Set
. This module uses the same
organizational approach as Core_map_intf
. See the documentation in core_map.mli for
a description of the approach.
module Int_replace_polymorphic_compare : sig ... end
module Perms : sig ... end
These types are intended to be used as phantom types encoding the permissions on a given type.
module Polymorphic_compare_intf : sig ... end
module Stack_intf : sig ... end
An interface for stacks that follows Core
's conventions, as opposed to OCaml's
standard Stack
module.
module Timing_wheel_ns_intf : sig ... end
A specialized priority queue for a set of time-based alarms.
module Core_kernel_private = Std.Core_kernel_private
To be used in implementing Core, but not by end users