include Core_kernel__.Pool_intf.Pool
module type S = Core_kernel__.Pool_intf.S
This uses an Obj_array.t
to implement the pool. We expose that Pointer.t
is an
int
so that OCaml can avoid the write barrier, due to knowing that Pointer.t
isn't an OCaml pointer.
include S with type 'a S.Pointer.t = private Core_kernel__.Import.int
module Slots : Core_kernel__.Tuple_type.Slots
module Slot : Core_kernel__.Tuple_type.Slot
module Pointer : sig ... end
type 'slots t
A pool. 'slots
will look like ('a1, ..., 'an) Slots.tn
, and the pool holds
tuples of type 'a1 * ... * 'an
.
val sexp_of_t : ('slots ‑> Sexplib.Sexp.t) ‑> 'slots t ‑> Sexplib.Sexp.t
val invariant : 'a Base__.Invariant_intf.inv ‑> 'a t Base__.Invariant_intf.inv
val pointer_is_valid : 'slots t ‑> 'slots Pointer.t ‑> Core_kernel__.Import.bool
pointer_is_valid t pointer
returns true
iff pointer
points to a live tuple in
t
, i.e. pointer
is not null, not free, and is in the range of t
.
A pointer might not be in the range of a pool if it comes from another pool for example. In this case unsafe_get/set functions would cause a segfault.
val id_of_pointer : 'slots t ‑> 'slots Pointer.t ‑> Pointer.Id.t
id_of_pointer t pointer
returns an id that is unique for the lifetime of
pointer
's tuple. When the tuple is freed, the id is no longer valid, and
pointer_of_id_exn
will fail on it. Pointer.null ()
has a distinct id from all
non-null pointers.
val pointer_of_id_exn : 'slots t ‑> Pointer.Id.t ‑> 'slots Pointer.t
pointer_of_id_exn t id
returns the pointer corresponding to id
. It fails if the
tuple corresponding to id
was already free
d.
val create : ('tuple, 'a) Slots.t ‑> capacity:Core_kernel__.Import.int ‑> dummy:'tuple ‑> ('tuple, 'a) Slots.t t
create slots ~capacity ~dummy
creates an empty pool that can hold up to capacity
N-tuples. The slots of dummy
are stored in free tuples. create
raises if
capacity < 0 || capacity > max_capacity ~slots_per_tuple
.
val max_capacity : slots_per_tuple:Core_kernel__.Import.int ‑> Core_kernel__.Import.int
max_capacity
returns the maximum capacity allowed when creating a pool.
val capacity : 'a t ‑> Core_kernel__.Import.int
capacity
returns the maximum number of tuples that the pool can hold.
val length : 'a t ‑> Core_kernel__.Import.int
length
returns the number of tuples currently in the pool.
0 <= length t <= capacity t
val grow : ?capacity:Core_kernel__.Import.int ‑> 'a t ‑> 'a t
grow t ~capacity
returns a new pool t'
with the supplied capacity. The new pool
is to be used as a replacement for t
. All live tuples in t
are now live in
t'
, and valid pointers to tuples in t
are now valid pointers to the identical
tuple in t'
. It is an error to use t
after calling grow t
.
grow
raises if the supplied capacity isn't larger than capacity t
.
val is_full : 'a t ‑> Core_kernel__.Import.bool
is_full t
returns true
if no more tuples can be allocated in t
.
val free : 'slots t ‑> 'slots Pointer.t ‑> Core_kernel__.Import.unit
free t pointer
frees the tuple pointed to by pointer
from t
.
val unsafe_free : 'slots t ‑> 'slots Pointer.t ‑> Core_kernel__.Import.unit
unsafe_free t pointer
frees the tuple pointed to by pointer
without checking
pointer_is_valid
new<N> t a0 ... a<N-1>
returns a new tuple from the pool, with the tuple's
slots initialized to a0
... a<N-1>
. new
raises if is_full t
.
get_tuple t pointer
allocates an OCaml tuple isomorphic to the pool t
's tuple
pointed to by pointer
. The tuple gets copied, but its slots do not.
val get : ('a, 'variant) Slots.t t ‑> ('a, 'variant) Slots.t Pointer.t ‑> ('variant, 'slot) Slot.t ‑> 'slot
get t pointer slot
gets slot
of the tuple pointed to by pointer
in
pool t
.
set t pointer slot a
sets to a
the slot
of the tuple pointed to by pointer
in pool t
.
In get
and set
, it is an error to refer to a pointer that has been free
d. It
is also an error to use a pointer with any pool other than the one the pointer was
new
'd from or grow
n to. These errors will lead to undefined behavior, but will
not segfault.
unsafe_get
is comparable in speed to get
for immediate values, and 5%-10% faster
for pointers.
unsafe_get
and unsafe_set
skip bounds checking, and can thus segfault.
module Unsafe : sig ... end
An Unsafe
pool is like an ordinary pool, except that the create
function does
not require an initial element. The pool stores Obj.magic ()
as the dummy value
for each slot. Such a pool is only safe if one never accesses a slot from a free
d
tuple.
Debug
builds a pool in which every function can run invariant
on its pool
argument(s) and/or print a debug message to stderr, as determined by
!check_invariant
and !show_messages
, which are initially both true
.
module Error_check : functor (Pool : S) -> S
Error_check
builds a pool that has additional error checking for pointers, in
particular to detect using a free
d pointer or multiply free
ing a pointer.