String type based on Bigarray, for use in I/O and C-bindings
type t = (Core_kernel__.Import.char, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.tType of bigstrings
include sig ... endval t_of_sexp : Sexplib.Sexp.t ‑> tval sexp_of_t : t ‑> Sexplib.Sexp.tval compare : t ‑> t ‑> Core_kernel__.Import.intval bin_t : t Bin_prot.Type_class.tval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (Core_kernel__.Import.int ‑> t) Bin_prot.Read.readerval bin_reader_t : t Bin_prot.Type_class.readerval bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_writer_t : t Bin_prot.Type_class.writerval bin_shape_t : Bin_prot.Shape.tinclude sig ... endval t_frozen_of_sexp : Sexplib.Sexp.t ‑> t_frozenval sexp_of_t_frozen : t_frozen ‑> Sexplib.Sexp.tval hash_fold_t_frozen : Ppx_hash_lib.Std.Hash.state ‑> t_frozen ‑> Ppx_hash_lib.Std.Hash.stateval hash_t_frozen : t_frozen ‑> Ppx_hash_lib.Std.Hash.hash_valueval compare_t_frozen : t_frozen ‑> t_frozen ‑> Core_kernel__.Import.intval bin_t_frozen : t_frozen Bin_prot.Type_class.tval bin_read_t_frozen : t_frozen Bin_prot.Read.readerval __bin_read_t_frozen__ : (Core_kernel__.Import.int ‑> t_frozen) Bin_prot.Read.readerval bin_reader_t_frozen : t_frozen Bin_prot.Type_class.readerval bin_size_t_frozen : t_frozen Bin_prot.Size.sizerval bin_write_t_frozen : t_frozen Bin_prot.Write.writerval bin_writer_t_frozen : t_frozen Bin_prot.Type_class.writerval bin_shape_t_frozen : Bin_prot.Shape.tinclude Core_kernel__.Import.Equal.S with type t := tval equal : t Core_kernel__.Import.Equal.equalval create : ?max_mem_waiting_gc:Byte_units.t ‑> Core_kernel__.Import.int ‑> tcreate length
create approach max_mem_waiting_gc,
the pressure in the garbage collector to be more agressive will increase.length.
Content is undefined.val init : Core_kernel__.Import.int ‑> f:(Core_kernel__.Import.int ‑> Core_kernel__.Import.char) ‑> tinit n ~f creates a bigstring t of length n, with t.{i} = f i
val of_string : ?pos:Core_kernel__.Import.int ‑> ?len:Core_kernel__.Import.int ‑> Core_kernel__.Import.string ‑> tof_string ?pos ?len str
len in str starting at position pos.String.length str - posval to_string : ?pos:Core_kernel__.Import.int ‑> ?len:Core_kernel__.Import.int ‑> t ‑> Core_kernel__.Import.stringto_string ?pos ?len bstr
len in bstr starting at position pos.length bstr - posval concat : ?sep:t ‑> t Core_kernel__.Import.list ‑> tconcat ?sep list returns the concatenation of list with sep in between each.
val check_args : loc:Core_kernel__.Import.string ‑> pos:Core_kernel__.Import.int ‑> len:Core_kernel__.Import.int ‑> t ‑> Core_kernel__.Import.unitcheck_args ~loc ~pos ~len bstr checks the position and length
arguments pos and len for bigstrings bstr.
loc to indicate the calling context.val get_opt_len : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int Core_kernel__.Import.option ‑> Core_kernel__.Import.intget_opt_len bstr ~pos opt_len
bstr starting at position pos and given optional length
opt_len. This function does not check the validity of its
arguments. Use check_args for that purpose.external get : t ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.char = "%caml_ba_ref_1" get t pos returns the character at pos
external set : t ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.char ‑> Core_kernel__.Import.unit = "%caml_ba_set_1" set t pos sets the character at pos
external is_mmapped : t ‑> Core_kernel__.Import.bool = "bigstring_is_mmapped_stub" is_mmapped bstr
bstr is
memory-mapped.blit ~src ?src_pos ?src_len ~dst ?dst_pos () blits src_len characters
from src starting at position src_pos to dst at position dst_pos.
include Blit.S with type t := tval blit : (t, t) Base.Blit_intf.blitval blito : (t, t) Base.Blit_intf.blitoval unsafe_blit : (t, t) Base.Blit_intf.blitval sub : (t, t) Base.Blit_intf.subval subo : (t, t) Base.Blit_intf.subomodule To_string : Blit.S_distinct with type src := t with type dst := Core_kernel__.Import.stringmodule From_string : Blit.S_distinct with type src := Core_kernel__.Import.string with type dst := tThese functions write the "size-prefixed" bin-prot format that is used by, e.g.,
async's Writer.write_bin_prot, Reader.read_bin_prot and
Unpack_buffer.Unpack_one.create_bin_prot.
val write_bin_prot : t ‑> ?pos:Core_kernel__.Import.int ‑> 'a Bin_prot.Type_class.writer ‑> 'a ‑> Core_kernel__.Import.intwrite_bin_prot t writer a writes a to t starting at pos, and returns the index
in t immediately after the last byte written. It raises if pos < 0 or if a
doesn't fit in t.
val read_bin_prot : t ‑> ?pos:Core_kernel__.Import.int ‑> ?len:Core_kernel__.Import.int ‑> 'a Bin_prot.Type_class.reader ‑> ('a * Core_kernel__.Import.int) Or_error.tThe read_bin_prot* functions read from the region of t starting at pos of length
len. They return the index in t immediately after the last byte read. They raise
if pos and len don't describe a region of t.
val read_bin_prot_verbose_errors : t ‑> ?pos:Core_kernel__.Import.int ‑> ?len:Core_kernel__.Import.int ‑> 'a Bin_prot.Type_class.reader ‑> [ `Invalid_data of Error.t | `Not_enough_data | `Ok of 'a * Core_kernel__.Import.int ]val map_file : shared:Core_kernel__.Import.bool ‑> Unix.file_descr ‑> Core_kernel__.Import.int ‑> tmap_file shared fd n memory-maps n characters of the data associated with
descriptor fd to a bigstring. Iff shared is true, all changes to the bigstring
will be reflected in the file.
Users must keep in mind that operations on the resulting bigstring may result in disk operations which block the runtime. This is true for pure OCaml operations (such as t.
<- 1), and for calls to blit. While some I/O operations may release the OCaml
lock, users should not expect this to be done for all operations on a bigstring
returned from map_file.
val find : ?pos:Core_kernel__.Import.int ‑> ?len:Core_kernel__.Import.int ‑> Core_kernel__.Import.char ‑> t ‑> Core_kernel__.Import.int Core_kernel__.Import.optionfind ?pos ?len char t returns Some i for the smallest i >= pos such that
t.{i} = char, or None if there is no such i.
length bstr - posexternal unsafe_find : t ‑> Core_kernel__.Import.char ‑> pos:Core_kernel__.Import.int ‑> len:Core_kernel__.Import.int ‑> Core_kernel__.Import.int = "bigstring_find" Same as find, but does no bounds checking, and returns a negative value instead of
None if char is not found.
external unsafe_destroy : t ‑> Core_kernel__.Import.unit = "bigstring_destroy_stub" unsafe_destroy bstr destroys the bigstring by deallocating its associated data or,
if memory-mapped, unmapping the corresponding file, and setting all dimensions to
zero. This effectively frees the associated memory or address-space resources
instantaneously. This feature helps working around a bug in the current OCaml
runtime, which does not correctly estimate how aggressively to reclaim such resources.
This operation is safe unless you have passed the bigstring to another thread that is performing operations on it at the same time. Access to the bigstring after this operation will yield array bounds exceptions.
Accessors for parsing binary values, analogous to binary_packing. These are in Bigstring rather than a separate module because:
1) Existing binary_packing requires copies and does not work with bigstrings 2) The accessors rely on the implementation of bigstring, and hence should changeshould the implementation of bigstring move away from Bigarray. 3) Bigstring already has some external C functions, so it didn't require many changes to the OMakefile ^_^.
In a departure from Binary_packing, the naming conventions are chosen to be close to C99 stdint types, as it's a more standard description and it is somewhat useful in making compact macros for the implementations. The accessor names contain endian-ness to allow for branch-free implementations
<accessor> ::= <unsafe><operation><type><endian><int> <unsafe> ::= unsafe_ | '' <operation> ::= get_ | set_ <type> ::= int16 | uint16 | int32 | int64 <endian> ::= _le | _be | '' <int> ::= _int | ''
The "unsafe_" prefix indicates that these functions do no bounds checking. Performance testing demonstrated that the bounds check was 2-3 times slower due to the fact that Bigstring.length is a C call, and not even a noalloc one. In practice, message parsers can check the size of an outer message once, and use the unsafe accessors for individual fields, so many bounds checks can end up being redundant as well. The situation could be improved by having bigarray cache the length/dimensions.
val unsafe_get_int8 : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_set_int8 : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_get_uint8 : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_set_uint8 : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_get_int16_le : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_get_int16_be : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_set_int16_le : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_set_int16_be : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_get_uint16_le : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_get_uint16_be : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_set_uint16_le : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_set_uint16_be : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_get_int32_le : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_get_int32_be : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_set_int32_le : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_set_int32_be : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_get_uint32_le : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_get_uint32_be : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_set_uint32_le : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_set_uint32_be : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitSimilar to the usage in binary_packing, the below methods are treating the value being read (or written), as an ocaml immediate integer, as such it is actually 63 bits. If the user is confident that the range of values used in practice will not require 64 bit precision (i.e. Less than Max_Long), then we can avoid allocation and use an immediate. If the user is wrong, an exception will be thrown (for get).
val unsafe_get_int64_le_exn : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_get_int64_be_exn : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_get_int64_le_trunc : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_get_int64_be_trunc : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_set_int64_le : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_set_int64_be : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_get_uint64_be_exn : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_get_uint64_le_exn : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.intval unsafe_set_uint64_le : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_set_uint64_be : t ‑> pos:Core_kernel__.Import.int ‑> Core_kernel__.Import.int ‑> Core_kernel__.Import.unitval unsafe_get_int32_t_le : t ‑> pos:Core_kernel__.Import.int ‑> Int32.tval unsafe_get_int32_t_be : t ‑> pos:Core_kernel__.Import.int ‑> Int32.tval unsafe_set_int32_t_le : t ‑> pos:Core_kernel__.Import.int ‑> Int32.t ‑> Core_kernel__.Import.unitval unsafe_set_int32_t_be : t ‑> pos:Core_kernel__.Import.int ‑> Int32.t ‑> Core_kernel__.Import.unitval unsafe_get_int64_t_le : t ‑> pos:Core_kernel__.Import.int ‑> Int64.tval unsafe_get_int64_t_be : t ‑> pos:Core_kernel__.Import.int ‑> Int64.tval unsafe_set_int64_t_le : t ‑> pos:Core_kernel__.Import.int ‑> Int64.t ‑> Core_kernel__.Import.unitval unsafe_set_int64_t_be : t ‑> pos:Core_kernel__.Import.int ‑> Int64.t ‑> Core_kernel__.Import.unitval get_tail_padded_fixed_string : padding:Core_kernel__.Import.char ‑> t ‑> pos:Core_kernel__.Import.int ‑> len:Core_kernel__.Import.int ‑> Core_kernel__.Import.unit ‑> Core_kernel__.Import.stringsimilar to Binary_packing.unpack_tail_padded_fixed_string and
.pack_tail_padded_fixed_string.
val set_tail_padded_fixed_string : padding:Core_kernel__.Import.char ‑> t ‑> pos:Core_kernel__.Import.int ‑> len:Core_kernel__.Import.int ‑> Core_kernel__.Import.string ‑> Core_kernel__.Import.unitval get_head_padded_fixed_string : padding:Core_kernel__.Import.char ‑> t ‑> pos:Core_kernel__.Import.int ‑> len:Core_kernel__.Import.int ‑> Core_kernel__.Import.unit ‑> Core_kernel__.Import.stringval set_head_padded_fixed_string : padding:Core_kernel__.Import.char ‑> t ‑> pos:Core_kernel__.Import.int ‑> len:Core_kernel__.Import.int ‑> Core_kernel__.Import.string ‑> Core_kernel__.Import.unit