Core_kernel greatly expands the functionality available in Base while still
remaining platform-agnostic. Core_kernel changes more frequently (i.e., is less
stable) than Base.
Some modules are mere extensions of their counterparts in Base, usually adding generic functionality by including functors that make them binable, comparable, sexpable, blitable, etc. The bulk of Core_kernel, though, is modules providing entirely new functionality.
It is broken in two pieces, Std_kernel and Std, where the first includes modules
that aren't overridden by Core, and the second defines modules that are.
Std_kernel defines modules exposed by Core_kernel that are not overridden by
Core. It is used in core.ml to re-export these modules.
module Applicative = Core_kernel__.Import.Applicativemodule Avltree = Core_kernel__.Import.Avltreemodule Backtrace = Core_kernel__.Import.Backtracemodule Bin_prot = Core_kernel__.Core_bin_protmodule Binary_search = Core_kernel__.Import.Binary_searchmodule Commutative_group = Core_kernel__.Import.Commutative_groupmodule Comparisons = Core_kernel__.Import.Comparisonsmodule Equal = Core_kernel__.Import.Equalmodule Exn = Base.Exnmodule Expect_test_config = Expect_test_configmodule Field = Core_kernel__.Import.Fieldmodule Floatable = Core_kernel__.Import.Floatablemodule Hash = Core_kernel__.Import.Hashmodule Heap_block = Core_kernel__.Import.Heap_blockmodule In_channel = Core_kernel__.Import.In_channelmodule Int_conversions = Base.Not_exposed_properly.Int_conversionsmodule Invariant = Core_kernel__.Import.Invariantmodule Monad = Core_kernel__.Import.Monadmodule Obj_array = Base.Not_exposed_properly.Obj_arraymodule Out_channel = Core_kernel__.Import.Out_channelmodule Poly = Core_kernel__.Import.Polymodule Polymorphic_compare = Core_kernel__.Import.Polymorphic_comparemodule Pretty_printer = Core_kernel__.Import.Pretty_printermodule Random = Base.Randommodule Sexp_maybe = Sexp.Sexp_maybemodule Staged = Base.Stagedmodule Stringable = Core_kernel__.Import.Stringablemodule Validate = Core_kernel__.Import.Validatemodule With_return = Core_kernel__.Import.With_returnmodule Word_size = Core_kernel__.Import.Word_sizemodule Char : sig ... endThis module extends Base.Char, adding Identifiable for making char
identifiers and Quickcheckable to facilitate automated testing with pseudorandom
data.
module Comparable : sig ... endComparable extends Base.Comparable and provides functions for
comparing like types.
module Comparator : sig ... endExtends Base.Comparator, providing a type-indexed value that
allows you to compare values of that type.
module Hashtbl : sig ... endmodule Hashtbl_intf : sig ... endHashtbl is a reimplementation of the standard MoreLabels.Hashtbl. Its
worst case time complexity is O(log(N)) for lookups and additions, unlike the standard
MoreLabels.Hashtbl, which is O(N).
module Info : sig ... endThis module extends Base.Info, which provides a type for info-level
debug messages.
module Linked_queue : sig ... endThis module extends the Base.Queue module with bin_io support. As a
reminder, the Base.Queue module is a wrapper around OCaml's standard Queue module
that follows Base idioms and adds some functions.
module Maybe_bound : sig ... endThis module extends Base.Maybe_bound with bin_io and with compare functions in the
form of As_lower_bound and As_upper_bound modules.
module Ordering : sig ... endExtends Base.Ordering, intended to make code that matches on the
result of a comparison more concise and easier to read.
module Set : sig ... endThis module defines the Set module for Core. Functions that construct a set take
as an argument the comparator for the element type.
module Unit : sig ... endModule for the type unit, extended from Base.Unit. This is mostly
useful for building functor arguments.
module Binable : sig ... endModule types and utilities for dealing with types that support the bin-io binary encoding.
module Binary_packing : sig ... endPacks and unpacks various types of integers into and from strings.
module Bounded_index : sig ... endmodule Bounded_int_table : sig ... endA Bounded_int_table is a table whose keys can be mapped to integers in a fixed
range, 0 ... num_keys - 1, where num_keys is specified at table-creation time. The
purpose of Bounded_int_table is to be faster than Hashtbl in situations where one
is willing to pay a space cost for the speed.
module Bucket : sig ... endA bucket is a simple data structure for holding up to size elements of a given type.
module Bus : sig ... endA Bus is a publisher/subscriber system within the memory space of the program. A
bus has a mutable set of subscribers, which can be modified using subscribe_exn and
unsubscribe.
module Byte_units : sig ... endConversions between units of measure that are based on bytes (like kilobytes, megabytes, gigabytes, and words).
module Day_of_week : sig ... endProvides a variant type for days of the week (Mon, Tue, etc.) and convenience
functions for converting these days into other formats, like seconds since the epoch.
module Fdeque : sig ... endA simple polymorphic functional double-ended queue. Use this if you need a queue-like
data structure that provides enqueue and dequeue accessors on both ends. For
strictly first-in, first-out access, see Fqueue.
module Flags : sig ... endmodule Float_with_finite_only_serialization : sig ... endAn alias to the Float.t type that causes the sexp and bin-io serializers to fail
when provided with nan or infinity.
module Force_once : sig ... endA "force_once" is a thunk that can only be forced once. Subsequent forces will raise an exception.
module Fqueue : sig ... endA simple polymorphic functional queue. Use this data structure for strictly first-in,
first-out access to a sequence of values. For a similar data structure with enqueue
and dequeue accessors on both ends of a sequence, see
Core_kernel.Fdeque.
module Gc : sig ... endThis is a wrapper around INRIA's standard Gc module. Provides memory
management control and statistics, and finalized values.
module Hash_heap : sig ... endA hash-heap is a combination of a heap and a hashtable that supports constant time lookup, and log(n) time removal and replacement of elements in addition to the normal heap operations.
module Hash_queue : sig ... endA hash-queue is a combination of a queue and a hashtable that supports constant-time lookup and removal of queue elements in addition to the usual queue operations (enqueue, dequeue). The queue elements are key-value pairs. The hashtable has one entry for each element of the queue.
module Hexdump : sig ... endmodule Hexdump_intf : sig ... endA functor for displaying a type as a sequence of ASCII characters printed in hexadecimal.
module Immediate_option : sig ... endmodule Int_set : sig ... endAn implementation of compressed integer sets using lists of integer ranges. Operations such as adding and membership are O(n) where n is the number of contiguous ranges in the set. For data that is mostly serial, n should remain very small.
module Limiter : sig ... endImplements a token-bucket-based throttling rate limiter. This module is useful for limiting network clients to a sensible query rate, or in any case where you have jobs that consume a scarce but replenishable resource.
module Map : sig ... endMap is a functional data structure (balanced binary tree) implementing finite maps
over a totally-ordered domain, called a "key".
module Month : sig ... endProvides a variant type for representing months (e.g., Jan, Feb, or Nov) and
functions for converting them to other formats (like an int).
module Moption : sig ... endA Moption is a mutable option, like 'a option ref, but with a more efficient
implementation; in particular, set_some does not allocate.
module No_polymorphic_compare : sig ... endOpen this in modules where you don't want to accidentally use polymorphic comparison.
Then, use Pervasives.(<), for example, where needed.
module Nothing : sig ... endAn uninhabited type. This is useful when interfaces require that a type be specified, but the implementer knows this type will not be used in their implementation of the interface.
module Only_in_test : sig ... endThis module can be used to safely expose functions and values in signatures that should only be used in unit tests.
module Optional_syntax : sig ... endInterfaces for use with the match%optional syntax, provided by ppx_optional.
module Percent : sig ... endA scale factor, not bounded between 0% and 100%, represented as a float.
module Pool : sig ... endmodule Pool_intf : sig ... endA manual memory manager for a set of mutable tuples. The point of Pool is to
allocate a single long-lived block of memory (the pool) that lives in the OCaml
major heap, and then to reuse the block, rather than continually allocating blocks
on the minor heap.
module Printexc : sig ... endThis module is here to ensure that we don't use the functions in Caml.Printexc
inadvertently.
module Quickcheck : sig ... endmodule Quickcheck_intf : sig ... endQuickcheck is a library that uses predicate-based tests and pseudo-random inputs to automate testing.
module Quickcheckable : sig ... endProvides functors for making a module quickcheckable with Quickcheck.
module Robustly_comparable : sig ... endThis interface compares float-like objects with a small tolerance.
module Rope : sig ... endA rope is a standard data structure that represents a single string as a tree of strings, allowing concatenation to do no work up front.
module Set_once : sig ... endA 'a Set_once.t is like an 'a option ref that can only be set once. A
Set_once.t starts out as None, the first set transitions it to Some, and
subsequent sets fail.
module Splittable_random = Splittable_randommodule Stable_comparable : sig ... endmodule Stable_unit_test : sig ... endThe tests generated by these functors are run like any other unit tests: by the inline test runner when the functor is applied.
module Substring : sig ... endA substring is a contiguous set of characters within a string. Creating a substring does not copy. Therefore modifying the string also modifies the substring.
module Total_map : sig ... endA map that includes an entry for every possible value of the key type.
module Tuple2 = Tuple.T2module Tuple3 = Tuple.T3module Type_immediacy : sig ... endWitnesses that express whether a type's values are always, sometimes, or never immediate.
module Unit_of_time : sig ... endRepresents a unit of time, e.g., that used by Time.Span.to_string_hum. Comparison
respects Nanosecond < Microsecond < Millisecond < Second < Minute < Hour < Day.
module Univ_map : sig ... endUniversal/heterogeneous maps, useful for storing values of arbitrary type in a single map.
module Validated : sig ... endmodule Weak : sig ... endModule for dealing with weak pointers, i.e., pointers that don't prevent garbage collection of what they point to.
module Weak_pointer : sig ... endA weak pointer is a pointer to a heap block that does not cause the heap block to remain live during garbage collection.
module type Unique_id = Unique_id.Idinclude Core_kernel__.TDerived from Base.T. Used for matching bare signatures with just a type.
include Base.TThis module defines various abstract interfaces that are convenient when one needs a module that matches a bare signature with just a type. This sometimes occurs in functor arguments and in interfaces.
module type T : sig ... endmodule type T1 : sig ... endmodule type T2 : sig ... endmodule type T3 : sig ... endmodule type T_bin : sig ... endinclude Core_kernel__.Std_internalinclude Core_kernel__.Core_pervasivesThis module has exactly the same interface and implementation as INRIA's Pervasives, except that some things are deprecated in favor of Core equivalents.
Functions here are in one of four states:
1. Deprecated using @@deprecated.
2. Accepted as part of Core for the forseeable future.
3. We haven't yet decided whether to deprecate, as indicated by a CR.
4. We plan to deprecate eventually, but haven't yet, as indicated by a CR.
Eventually, this module will be removed, and it will be recommended to compile with -nopervasives when using Core.
external raise_notrace : exn ‑> 'a = "%raise_notrace" A faster version raise which does not record the backtrace.
exception ExitThe Exit exception is not raised by any library function. It is
provided for use in your programs.
external (=) : 'a ‑> 'a ‑> bool = "%equal" e1 = e2 tests for structural equality of e1 and e2.
Mutable structures (e.g. references and arrays) are equal
if and only if their current contents are structurally equal,
even if the two mutable objects are not the same physical object.
Equality between functional values raises Invalid_argument.
Equality between cyclic data structures may not terminate.
external (>=) : 'a ‑> 'a ‑> bool = "%greaterequal" Structural ordering functions. These functions coincide with
the usual orderings over integers, characters, strings, byte sequences
and floating-point numbers, and extend them to a
total ordering over all types.
The ordering is compatible with ( = ). As in the case
of ( = ), mutable structures are compared by contents.
Comparison between functional values raises Invalid_argument.
Comparison between cyclic structures may not terminate.
external compare : 'a ‑> 'a ‑> int = "%compare" compare x y returns 0 if x is equal to y,
a negative integer if x is less than y, and a positive integer
if x is greater than y. The ordering implemented by compare
is compatible with the comparison predicates =, < and >
defined above, with one difference on the treatment of the float value
Pervasives.nan. Namely, the comparison predicates treat nan
as different from any other float value, including itself;
while compare treats nan as equal to itself and less than any
other float value. This treatment of nan ensures that compare
defines a total ordering relation.
compare applied to functional values may raise Invalid_argument.
compare applied to cyclic structures may not terminate.
The compare function can be used as the comparison function
required by the Set.Make and Map.Make functors, as well as
the List.sort and Array.sort functions.
val min : 'a ‑> 'a ‑> 'aReturn the smaller of the two arguments.
The result is unspecified if one of the arguments contains
the float value nan.
val max : 'a ‑> 'a ‑> 'aReturn the greater of the two arguments.
The result is unspecified if one of the arguments contains
the float value nan.
external (==) : 'a ‑> 'a ‑> bool = "%eq" e1 == e2 tests for physical equality of e1 and e2.
On mutable types such as references, arrays, byte sequences, records with
mutable fields and objects with mutable instance variables,
e1 == e2 is true if and only if physical modification of e1
also affects e2.
On non-mutable types, the behavior of ( == ) is
implementation-dependent; however, it is guaranteed that
e1 == e2 implies compare e1 e2 = 0.
external (!=) : 'a ‑> 'a ‑> bool = "%noteq" Negation of Pervasives.( == ).
external (&&) : bool ‑> bool ‑> bool = "%sequand" The boolean 'and'. Evaluation is sequential, left-to-right:
in e1 && e2, e1 is evaluated first, and if it returns false,
e2 is not evaluated at all.
external (&) : bool ‑> bool ‑> bool = "%sequand" external (||) : bool ‑> bool ‑> bool = "%sequor" The boolean 'or'. Evaluation is sequential, left-to-right:
in e1 || e2, e1 is evaluated first, and if it returns true,
e2 is not evaluated at all.
external or : bool ‑> bool ‑> bool = "%sequor" external __LOC__ : string = "%loc_LOC" __LOC__ returns the location at which this expression appears in
the file currently being parsed by the compiler, with the standard
error format of OCaml: "File %S, line %d, characters %d-%d"
external __FILE__ : string = "%loc_FILE" __FILE__ returns the name of the file currently being
parsed by the compiler.
external __LINE__ : int = "%loc_LINE" __LINE__ returns the line number at which this expression
appears in the file currently being parsed by the compiler.
external __MODULE__ : string = "%loc_MODULE" __MODULE__ returns the module name of the file being
parsed by the compiler.
external __POS__ : string * int * int * int = "%loc_POS" __POS__ returns a tuple (file,lnum,cnum,enum), corresponding
to the location at which this expression appears in the file
currently being parsed by the compiler. file is the current
filename, lnum the line number, cnum the character position in
the line and enum the last character position in the line.
external __LOC_OF__ : 'a ‑> string * 'a = "%loc_LOC" __LOC_OF__ expr returns a pair (loc, expr) where loc is the
location of expr in the file currently being parsed by the
compiler, with the standard error format of OCaml: "File %S, line
%d, characters %d-%d"
external __LINE_OF__ : 'a ‑> int * 'a = "%loc_LINE" __LINE_OF__ expr returns a pair (line, expr), where line is the
line number at which the expression expr appears in the file
currently being parsed by the compiler.
external __POS_OF__ : 'a ‑> (string * int * int * int) * 'a = "%loc_POS" __POS_OF__ expr returns a pair (expr,loc), where loc is a
tuple (file,lnum,cnum,enum) corresponding to the location at
which the expression expr appears in the file currently being
parsed by the compiler. file is the current filename, lnum the
line number, cnum the character position in the line and enum
the last character position in the line.
external (|>) : 'a ‑> ('a ‑> 'b) ‑> 'b = "%revapply" Reverse-application operator: x |> f |> g is exactly equivalent
to g (f (x)).
external (@@) : ('a ‑> 'b) ‑> 'a ‑> 'b = "%apply" Application operator: g @@ f @@ x is exactly equivalent to
g (f (x)).
Integers are 31 bits wide (or 63 bits on 64-bit processors). All operations are taken modulo 231 (or 263). They do not fail on overflow.
external (~+) : int ‑> int = "%identity" Unary addition. You can also write + e instead of ~+ e.
external (/) : int ‑> int ‑> int = "%divint" Integer division.
Raise Division_by_zero if the second argument is 0.
Integer division rounds the real quotient of its arguments towards zero.
More precisely, if x >= 0 and y > 0, x / y is the greatest integer
less than or equal to the real quotient of x by y. Moreover,
(- x) / y = x / (- y) = - (x / y).
external (mod) : int ‑> int ‑> int = "%modint" Integer remainder. If y is not zero, the result
of x mod y satisfies the following properties:
x = (x / y) * y + x mod y and
abs(x mod y) <= abs(y) - 1.
If y = 0, x mod y raises Division_by_zero.
Note that x mod y is negative only if x < 0.
Raise Division_by_zero if y is zero.
val abs : int ‑> intReturn the absolute value of the argument. Note that this may be
negative if the argument is min_int.
external (lsl) : int ‑> int ‑> int = "%lslint" n lsl m shifts n to the left by m bits.
The result is unspecified if m < 0 or m >= bitsize,
where bitsize is 32 on a 32-bit platform and
64 on a 64-bit platform.
external (lsr) : int ‑> int ‑> int = "%lsrint" n lsr m shifts n to the right by m bits.
This is a logical shift: zeroes are inserted regardless of
the sign of n.
The result is unspecified if m < 0 or m >= bitsize.
external (asr) : int ‑> int ‑> int = "%asrint" n asr m shifts n to the right by m bits.
This is an arithmetic shift: the sign bit of n is replicated.
The result is unspecified if m < 0 or m >= bitsize.
OCaml's floating-point numbers follow the
IEEE 754 standard, using double precision (64 bits) numbers.
Floating-point operations never raise an exception on overflow,
underflow, division by zero, etc. Instead, special IEEE numbers
are returned as appropriate, such as infinity for 1.0 /. 0.0,
neg_infinity for -1.0 /. 0.0, and nan ('not a number')
for 0.0 /. 0.0. These special numbers then propagate through
floating-point computations as expected: for instance,
1.0 /. infinity is 0.0, and any arithmetic operation with nan
as argument returns nan as result.
external (~-.) : float ‑> float = "%negfloat" Unary negation. You can also write -. e instead of ~-. e.
external (~+.) : float ‑> float = "%identity" Unary addition. You can also write +. e instead of ~+. e.
external log10 : float ‑> float = "caml_log10_float" "log10" Base 10 logarithm.
external expm1 : float ‑> float = "caml_expm1_float" "caml_expm1" expm1 x computes exp x -. 1.0, giving numerically-accurate results
even if x is close to 0.0.
external log1p : float ‑> float = "caml_log1p_float" "caml_log1p" log1p x computes log(1.0 +. x) (natural logarithm),
giving numerically-accurate results even if x is close to 0.0.
external cos : float ‑> float = "caml_cos_float" "cos" Cosine. Argument is in radians.
external sin : float ‑> float = "caml_sin_float" "sin" Sine. Argument is in radians.
external tan : float ‑> float = "caml_tan_float" "tan" Tangent. Argument is in radians.
external acos : float ‑> float = "caml_acos_float" "acos" Arc cosine. The argument must fall within the range [-1.0, 1.0].
Result is in radians and is between 0.0 and pi.
external asin : float ‑> float = "caml_asin_float" "asin" Arc sine. The argument must fall within the range [-1.0, 1.0].
Result is in radians and is between -pi/2 and pi/2.
external atan : float ‑> float = "caml_atan_float" "atan" Arc tangent.
Result is in radians and is between -pi/2 and pi/2.
external atan2 : float ‑> float ‑> float = "caml_atan2_float" "atan2" atan2 y x returns the arc tangent of y /. x. The signs of x
and y are used to determine the quadrant of the result.
Result is in radians and is between -pi and pi.
external hypot : float ‑> float ‑> float = "caml_hypot_float" "caml_hypot" hypot x y returns sqrt(x *. x + y *. y), that is, the length
of the hypotenuse of a right-angled triangle with sides of length
x and y, or, equivalently, the distance of the point (x,y)
to origin.
external cosh : float ‑> float = "caml_cosh_float" "cosh" Hyperbolic cosine. Argument is in radians.
external sinh : float ‑> float = "caml_sinh_float" "sinh" Hyperbolic sine. Argument is in radians.
external tanh : float ‑> float = "caml_tanh_float" "tanh" Hyperbolic tangent. Argument is in radians.
external ceil : float ‑> float = "caml_ceil_float" "ceil" Round above to an integer value.
ceil f returns the least integer value greater than or equal to f.
The result is returned as a float.
external floor : float ‑> float = "caml_floor_float" "floor" Round below to an integer value.
floor f returns the greatest integer value less than or
equal to f.
The result is returned as a float.
external abs_float : float ‑> float = "%absfloat" abs_float f returns the absolute value of f.
external copysign : float ‑> float ‑> float = "caml_copysign_float" "caml_copysign" copysign x y returns a float whose absolute value is that of x
and whose sign is that of y. If x is nan, returns nan.
If y is nan, returns either x or -. x, but it is not
specified which.
external mod_float : float ‑> float ‑> float = "caml_fmod_float" "fmod" mod_float a b returns the remainder of a with respect to
b. The returned value is a -. n *. b, where n
is the quotient a /. b rounded towards zero to an integer.
external frexp : float ‑> float * int = "caml_frexp_float" frexp f returns the pair of the significant
and the exponent of f. When f is zero, the
significant x and the exponent n of f are equal to
zero. When f is non-zero, they are defined by
f = x *. 2 ** n and 0.5 <= x < 1.0.
external ldexp : float ‑> int ‑> float = "caml_ldexp_float" "caml_ldexp_float_unboxed" ldexp x n returns x *. 2 ** n.
external modf : float ‑> float * float = "caml_modf_float" modf f returns the pair of the fractional and integral
part of f.
external truncate : float ‑> int = "%intoffloat" Same as Pervasives.int_of_float.
external int_of_float : float ‑> int = "%intoffloat" Truncate the given floating-point number to an integer.
The result is unspecified if the argument is nan or falls outside the
range of representable integers.
val nan : floatA special floating-point value denoting the result of an
undefined operation such as 0.0 /. 0.0. Stands for
'not a number'. Any floating-point operation with nan as
argument returns nan as result. As for floating-point comparisons,
=, <, <=, > and >= return false and <> returns true
if one or both of their arguments is nan.
val max_float : floatThe largest positive finite value of type float.
val min_float : floatThe smallest positive, non-zero, non-denormalized value of type float.
val epsilon_float : floatThe difference between 1.0 and the smallest exactly representable
floating-point number greater than 1.0.
type fpclass = Pervasives.fpclass = The five classes of floating-point numbers, as determined by the Pervasives.classify_float function.
external classify_float : float ‑> fpclass = "caml_classify_float" "caml_classify_float_unboxed" Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.
More string operations are provided in module String.
More character operations are provided in module Char.
val char_of_int : int ‑> charReturn the character with the given ASCII code.
Raise Invalid_argument "char_of_int" if the argument is
outside the range 0--255.
external ignore : 'a ‑> unit = "%ignore" Discard the value of its argument and return ().
For instance, ignore(f x) discards the result of
the side-effecting function f. It is equivalent to
f x; (), except that the latter may generate a
compiler warning; writing ignore(f x) instead
avoids the warning.
val string_of_bool : bool ‑> stringReturn the string representation of a boolean. As the returned values may be shared, the user should not modify them directly.
val bool_of_string : string ‑> boolConvert the given string to a boolean.
Raise Invalid_argument "bool_of_string" if the string is not
"true" or "false".
external int_of_string : string ‑> int = "caml_int_of_string" Convert the given string to an integer.
The string is read in decimal (by default) or in hexadecimal (if it
begins with 0x or 0X), octal (if it begins with 0o or 0O),
or binary (if it begins with 0b or 0B).
Raise Failure "int_of_string" if the given string is not
a valid representation of an integer, or if the integer represented
exceeds the range of integers representable in type int.
external float_of_string : string ‑> float = "caml_float_of_string" Convert the given string to a float. Raise Failure "float_of_string"
if the given string is not a valid representation of a float.
More list operations are provided in module List.
val (@) : 'a list ‑> 'a list ‑> 'a listList concatenation.
Note: all input/output functions can raise Sys_error when the system
calls they invoke fail.
type in_channel = Pervasives.in_channelThe type of input channel.
type out_channel = Pervasives.out_channelThe type of output channel.
val stdin : Pervasives.in_channelThe standard input for the process.
val print_char : char ‑> unitPrint a character on standard output.
val print_bytes : bytes ‑> unitPrint a byte sequence on standard output.
val print_int : int ‑> unitPrint an integer, in decimal, on standard output.
val print_float : float ‑> unitPrint a floating-point number, in decimal, on standard output.
val print_endline : string ‑> unitPrint a string, followed by a newline character, on standard output and flush standard output.
val print_newline : unit ‑> unitPrint a newline character on standard output, and flush standard output. This can be used to simulate line buffering of standard output.
val prerr_char : char ‑> unitPrint a character on standard error.
val prerr_string : string ‑> unitPrint a string on standard error.
val prerr_bytes : bytes ‑> unitPrint a byte sequence on standard error.
val prerr_int : int ‑> unitPrint an integer, in decimal, on standard error.
val prerr_float : float ‑> unitPrint a floating-point number, in decimal, on standard error.
val prerr_endline : string ‑> unitPrint a string, followed by a newline character on standard error and flush standard error.
val prerr_newline : unit ‑> unitPrint a newline character on standard error, and flush standard error.
val read_line : unit ‑> stringFlush standard output, then read characters from standard input until a newline character is encountered. Return the string of all characters read, without the newline character at the end.
val read_int : unit ‑> intFlush standard output, then read one line from standard input
and convert it to an integer. Raise Failure "int_of_string"
if the line read is not a valid representation of an integer.
val read_float : unit ‑> floatFlush standard output, then read one line from standard input and convert it to a floating-point number. The result is unspecified if the line read is not a valid representation of a floating-point number.
type open_flag = Pervasives.open_flag = Opening modes for Pervasives.open_out_gen and Pervasives.open_in_gen.
val open_out : string ‑> Pervasives.out_channelOpen the named file for writing, and return a new output channel on that file, positionned at the beginning of the file. The file is truncated to zero length if it already exists. It is created if it does not already exists.
val open_out_bin : string ‑> Pervasives.out_channelSame as Pervasives.open_out, but the file is opened in binary mode, so that no translation takes place during writes. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Pervasives.open_out.
val open_out_gen : Pervasives.open_flag list ‑> int ‑> string ‑> Pervasives.out_channelopen_out_gen mode perm filename opens the named file for writing,
as described above. The extra argument mode
specify the opening mode. The extra argument perm specifies
the file permissions, in case the file must be created.
Pervasives.open_out and Pervasives.open_out_bin are special
cases of this function.
val flush : Pervasives.out_channel ‑> unitFlush the buffer associated with the given output channel, performing all pending writes on that channel. Interactive programs must be careful about flushing standard output and standard error at the right time.
val flush_all : unit ‑> unitFlush all open output channels; ignore errors.
val output_char : Pervasives.out_channel ‑> char ‑> unitWrite the character on the given output channel.
val output_string : Pervasives.out_channel ‑> string ‑> unitWrite the string on the given output channel.
val output_bytes : Pervasives.out_channel ‑> bytes ‑> unitWrite the byte sequence on the given output channel.
val output : Pervasives.out_channel ‑> bytes ‑> int ‑> int ‑> unitoutput oc buf pos len writes len characters from byte sequence buf,
starting at offset pos, to the given output channel oc.
Raise Invalid_argument "output" if pos and len do not
designate a valid range of buf.
val output_substring : Pervasives.out_channel ‑> string ‑> int ‑> int ‑> unitSame as output but take a string as argument instead of
a byte sequence.
val output_byte : Pervasives.out_channel ‑> int ‑> unitWrite one 8-bit integer (as the single character with that code) on the given output channel. The given integer is taken modulo 256.
val output_binary_int : Pervasives.out_channel ‑> int ‑> unitWrite one integer in binary format (4 bytes, big-endian) on the given output channel. The given integer is taken modulo 232. The only reliable way to read it back is through the Pervasives.input_binary_int function. The format is compatible across all machines for a given version of OCaml.
val output_value : Pervasives.out_channel ‑> 'a ‑> unitWrite the representation of a structured value of any type to a channel. Circularities and sharing inside the value are detected and preserved. The object can be read back, by the function Pervasives.input_value. See the description of module Marshal for more information. Pervasives.output_value is equivalent to Marshal.to_channel with an empty list of flags.
val seek_out : Pervasives.out_channel ‑> int ‑> unitseek_out chan pos sets the current writing position to pos
for channel chan. This works only for regular files. On
files of other kinds (such as terminals, pipes and sockets),
the behavior is unspecified.
val pos_out : Pervasives.out_channel ‑> intReturn the current writing position for the given channel. Does
not work on channels opened with the Open_append flag (returns
unspecified results).
val out_channel_length : Pervasives.out_channel ‑> intReturn the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless.
val close_out : Pervasives.out_channel ‑> unitClose the given channel, flushing all buffered write operations.
Output functions raise a Sys_error exception when they are
applied to a closed output channel, except close_out and flush,
which do nothing when applied to an already closed channel.
Note that close_out may raise Sys_error if the operating
system signals an error when flushing or closing.
val close_out_noerr : Pervasives.out_channel ‑> unitSame as close_out, but ignore all errors.
val set_binary_mode_out : Pervasives.out_channel ‑> bool ‑> unitset_binary_mode_out oc true sets the channel oc to binary
mode: no translations take place during output.
set_binary_mode_out oc false sets the channel oc to text
mode: depending on the operating system, some translations
may take place during output. For instance, under Windows,
end-of-lines will be translated from \n to \r\n.
This function has no effect under operating systems that
do not distinguish between text mode and binary mode.
val open_in : string ‑> Pervasives.in_channelOpen the named file for reading, and return a new input channel on that file, positionned at the beginning of the file.
val open_in_bin : string ‑> Pervasives.in_channelSame as Pervasives.open_in, but the file is opened in binary mode, so that no translation takes place during reads. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Pervasives.open_in.
val open_in_gen : Pervasives.open_flag list ‑> int ‑> string ‑> Pervasives.in_channelopen_in_gen mode perm filename opens the named file for reading,
as described above. The extra arguments
mode and perm specify the opening mode and file permissions.
Pervasives.open_in and Pervasives.open_in_bin are special
cases of this function.
val input_char : Pervasives.in_channel ‑> charRead one character from the given input channel.
Raise End_of_file if there are no more characters to read.
val input_line : Pervasives.in_channel ‑> stringRead characters from the given input channel, until a
newline character is encountered. Return the string of
all characters read, without the newline character at the end.
Raise End_of_file if the end of the file is reached
at the beginning of line.
val input : Pervasives.in_channel ‑> bytes ‑> int ‑> int ‑> intinput ic buf pos len reads up to len characters from
the given channel ic, storing them in byte sequence buf, starting at
character number pos.
It returns the actual number of characters read, between 0 and
len (inclusive).
A return value of 0 means that the end of file was reached.
A return value between 0 and len exclusive means that
not all requested len characters were read, either because
no more characters were available at that time, or because
the implementation found it convenient to do a partial read;
input must be called again to read the remaining characters,
if desired. (See also Pervasives.really_input for reading
exactly len characters.)
Exception Invalid_argument "input" is raised if pos and len
do not designate a valid range of buf.
val really_input : Pervasives.in_channel ‑> bytes ‑> int ‑> int ‑> unitreally_input ic buf pos len reads len characters from channel ic,
storing them in byte sequence buf, starting at character number pos.
Raise End_of_file if the end of file is reached before len
characters have been read.
Raise Invalid_argument "really_input" if
pos and len do not designate a valid range of buf.
val really_input_string : Pervasives.in_channel ‑> int ‑> stringreally_input_string ic len reads len characters from channel ic
and returns them in a new string.
Raise End_of_file if the end of file is reached before len
characters have been read.
val input_byte : Pervasives.in_channel ‑> intSame as Pervasives.input_char, but return the 8-bit integer representing
the character.
Raise End_of_file if an end of file was reached.
val input_binary_int : Pervasives.in_channel ‑> intRead an integer encoded in binary format (4 bytes, big-endian)
from the given input channel. See Pervasives.output_binary_int.
Raise End_of_file if an end of file was reached while reading the
integer.
val input_value : Pervasives.in_channel ‑> 'aRead the representation of a structured value, as produced by Pervasives.output_value, and return the corresponding value. This function is identical to Marshal.from_channel; see the description of module Marshal for more information, in particular concerning the lack of type safety.
val seek_in : Pervasives.in_channel ‑> int ‑> unitseek_in chan pos sets the current reading position to pos
for channel chan. This works only for regular files. On
files of other kinds, the behavior is unspecified.
val pos_in : Pervasives.in_channel ‑> intReturn the current reading position for the given channel.
val in_channel_length : Pervasives.in_channel ‑> intReturn the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless. The returned size does not take into account the end-of-line translations that can be performed when reading from a channel opened in text mode.
val close_in : Pervasives.in_channel ‑> unitClose the given channel. Input functions raise a Sys_error
exception when they are applied to a closed input channel,
except close_in, which does nothing when applied to an already
closed channel.
val close_in_noerr : Pervasives.in_channel ‑> unitSame as close_in, but ignore all errors.
val set_binary_mode_in : Pervasives.in_channel ‑> bool ‑> unitset_binary_mode_in ic true sets the channel ic to binary
mode: no translations take place during input.
set_binary_mode_out ic false sets the channel ic to text
mode: depending on the operating system, some translations
may take place during input. For instance, under Windows,
end-of-lines will be translated from \r\n to \n.
This function has no effect under operating systems that
do not distinguish between text mode and binary mode.
module LargeFile = Core_kernel__.Core_pervasives.LargeFileOperations on large files.
This sub-module provides 64-bit variants of the channel functions
that manipulate file positions and file sizes. By representing
positions and sizes by 64-bit integers (type int64) instead of
regular integers (type int), these alternate functions allow
operating on files whose sizes are greater than max_int.
external (!) : 'a ref ‑> 'a = "%field0" !r returns the current contents of reference r.
Equivalent to fun r -> r.contents.
external (:=) : 'a ref ‑> 'a ‑> unit = "%setfield0" r := a stores the value of a in reference r.
Equivalent to fun r v -> r.contents <- v.
external incr : int ref ‑> unit = "%incr" Increment the integer contained in the given reference.
Equivalent to fun r -> r := succ !r.
external decr : int ref ‑> unit = "%decr" Decrement the integer contained in the given reference.
Equivalent to fun r -> r := pred !r.
Result type
Format strings are character strings with special lexical conventions that defines the functionality of formatted input/output functions. Format strings are used to read data with formatted input functions from module Scanf and to print data with formatted output functions from modules Printf and Format.
Format strings are made of three kinds of entities:
'%'
followed by one or more characters specifying what kind of argument to
read or print,'@'
followed by one or more characters specifying how to read or print the
argument,There is an additional lexical rule to escape the special characters '%'
and '@' in format strings: if a special character follows a '%'
character, it is treated as a plain character. In other words, "%%" is
considered as a plain '%' and "%@" as a plain '@'.
For more information about conversion specifications and formatting indications available, read the documentation of modules Scanf, Printf and Format.
Format strings have a general and highly polymorphic type
('a, 'b, 'c, 'd, 'e, 'f) format6.
The two simplified types, format and format4 below are
included for backward compatibility with earlier releases of
OCaml.
The meaning of format string type parameters is as follows:
'a is the type of the parameters of the format for formatted output
functions (printf-style functions);
'a is the type of the values read by the format for formatted input
functions (scanf-style functions).'b is the type of input source for formatted input functions and the
type of output target for formatted output functions.
For printf-style functions from module Printf, 'b is typically
out_channel;
for printf-style functions from module Format, 'b is typically
Format.formatter;
for scanf-style functions from module Scanf, 'b is typically
Scanf.Scanning.in_channel.Type argument 'b is also the type of the first argument given to
user's defined printing functions for %a and %t conversions,
and user's defined reading functions for %r conversion.
'c is the type of the result of the %a and %t printing
functions, and also the type of the argument transmitted to the
first argument of kprintf-style functions or to the
kscanf-style functions.'d is the type of parameters for the scanf-style functions.'e is the type of the receiver function for the scanf-style functions.'f is the final result type of a formatted input/output function
invocation: for the printf-style functions, it is typically unit;
for the scanf-style functions, it is typically the result type of the
receiver function.type ('a, 'b, 'c, 'd, 'e, 'f) format6 = ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6val string_of_format : ('a, 'b, 'c, 'd, 'e, 'f) format6 ‑> stringConverts a format string into a string.
external format_of_string : ('a, 'b, 'c, 'd, 'e, 'f) format6 ‑> ('a, 'b, 'c, 'd, 'e, 'f) format6 = "%identity" format_of_string s returns a format string read from the string
literal s.
Note: format_of_string can not convert a string argument that is not a
literal. If you need this functionality, use the more general
Scanf.format_from_string function.
val (^^) : ('a, 'b, 'c, 'd, 'e, 'f) format6 ‑> ('f, 'b, 'c, 'e, 'g, 'h) format6 ‑> ('a, 'b, 'c, 'd, 'g, 'h) format6f1 ^^ f2 catenates format strings f1 and f2. The result is a
format string that behaves as the concatenation of format strings f1 and
f2: in case of formatted output, it accepts arguments from f1, then
arguments from f2; in case of formatted input, it returns results from
f1, then results from f2.
val exit : int ‑> 'aTerminate the process, returning the given status code
to the operating system: usually 0 to indicate no errors,
and a small positive integer to indicate failure.
All open output channels are flushed with flush_all.
An implicit exit 0 is performed each time a program
terminates normally. An implicit exit 2 is performed if the program
terminates early because of an uncaught exception.
val at_exit : (unit ‑> unit) ‑> unitRegister the given function to be called at program
termination time. The functions registered with at_exit
will be called when the program executes Pervasives.exit,
or terminates, either normally or because of an uncaught exception.
The functions are called in 'last in, first out' order:
the function most recently added with at_exit is called first.
include Either.Exportinclude Core_kernel__.Import.From_sexplibinclude sig ... endval bigstring_of_sexp : Base.Sexp.t ‑> bigstringval sexp_of_bigstring : bigstring ‑> Base.Sexp.tval sexp_of_opaque : _ ‑> Base.Sexp.tval opaque_of_sexp : Base.Sexp.t ‑> _val sexp_of_pair : ('a ‑> Base.Sexp.t) ‑> ('b ‑> Base.Sexp.t) ‑> ('a * 'b) ‑> Base.Sexp.tval pair_of_sexp : (Base.Sexp.t ‑> 'a) ‑> (Base.Sexp.t ‑> 'b) ‑> Base.Sexp.t ‑> 'a * 'bexception Of_sexp_error of Core_kernel__.Import.exn * Base.Sexp.tval of_sexp_error : Core_kernel__.Import.string ‑> Base.Sexp.t ‑> _val of_sexp_error_exn : Core_kernel__.Import.exn ‑> Base.Sexp.t ‑> _include InterfacesVarious interface exports.
module type Applicative = Core_kernel__.Import.Applicative.Smodule type Binable = Core_kernel__.Binable0.Smodule type Comparable = Comparable.Smodule type Comparable_binable = Comparable.S_binablemodule type Floatable = Core_kernel__.Import.Floatable.Smodule type Hashable = Hashable.Smodule type Hashable_binable = Hashable.S_binablemodule type Identifiable = Identifiable.Smodule type Infix_comparators = Comparable.Infixmodule type Intable = Core_kernel__.Import.Intable.Smodule type Monad = Core_kernel__.Import.Monad.Smodule type Quickcheckable = Quickcheckable.Smodule type Robustly_comparable = Robustly_comparable.Smodule type Sexpable = Sexpable.Smodule type Stable = Core_kernel__.Stable_module_types.S0module type Stable_int63able = Core_kernel__.Stable_int63able.Smodule type Stable1 = Core_kernel__.Stable_module_types.S1module type Stable2 = Core_kernel__.Stable_module_types.S2module type Stable3 = Core_kernel__.Stable_module_types.S3module type Stable4 = Core_kernel__.Stable_module_types.S4module type Stringable = Core_kernel__.Import.Stringable.Sinclude List.Infixval (@) : 'a Base__List.t ‑> 'a Base__List.t ‑> 'a Base__List.tinclude Core_kernel__.Never_returnsnever_returns should be used as the return type of functions that don't return and
might block forever, rather than 'a or _. This forces callers of such functions
to have a call to never_returns at the call site, which makes it clear to readers
what's going on. We do not intend to use this type for functions such as failwithf
that always raise an exception.
val sexp_of_never_returns : never_returns ‑> Base.Sexp.tval never_returns : Nothing.t ‑> 'ainclude Ordering.Exportinclude Perms.ExportWe don't expose bin_io for write due to a naming conflict with the functions
exported by bin_io for read_write. If you want bin_io for write, use
Write.t.
include sig ... endval bin_read : read Bin_prot.Type_class.tval bin_read_read : read Bin_prot.Read.readerval __bin_read_read__ : (Core_kernel__.Import.int ‑> read) Bin_prot.Read.readerval bin_reader_read : read Bin_prot.Type_class.readerval bin_size_read : read Bin_prot.Size.sizerval bin_write_read : read Bin_prot.Write.writerval bin_writer_read : read Bin_prot.Type_class.writerval bin_shape_read : Bin_prot.Shape.tval compare_read : read ‑> read ‑> Core_kernel__.Import.intval hash_fold_read : Base.Hash.state ‑> read ‑> Base.Hash.stateval hash_read : read ‑> Base.Hash.hash_valueval read_of_sexp : Base.Sexp.t ‑> readval sexp_of_read : read ‑> Base.Sexp.tinclude sig ... endval compare_write : write ‑> write ‑> Core_kernel__.Import.intval hash_fold_write : Base.Hash.state ‑> write ‑> Base.Hash.stateval hash_write : write ‑> Base.Hash.hash_valueval write_of_sexp : Base.Sexp.t ‑> writeval sexp_of_write : write ‑> Base.Sexp.tinclude sig ... endval bin_immutable : immutable Bin_prot.Type_class.tval bin_read_immutable : immutable Bin_prot.Read.readerval __bin_read_immutable__ : (Core_kernel__.Import.int ‑> immutable) Bin_prot.Read.readerval bin_reader_immutable : immutable Bin_prot.Type_class.readerval bin_size_immutable : immutable Bin_prot.Size.sizerval bin_write_immutable : immutable Bin_prot.Write.writerval bin_writer_immutable : immutable Bin_prot.Type_class.writerval bin_shape_immutable : Bin_prot.Shape.tval compare_immutable : immutable ‑> immutable ‑> Core_kernel__.Import.intval hash_fold_immutable : Base.Hash.state ‑> immutable ‑> Base.Hash.stateval hash_immutable : immutable ‑> Base.Hash.hash_valueval immutable_of_sexp : Base.Sexp.t ‑> immutableval sexp_of_immutable : immutable ‑> Base.Sexp.tinclude sig ... endval bin_read_write : read_write Bin_prot.Type_class.tval bin_read_read_write : read_write Bin_prot.Read.readerval __bin_read_read_write__ : (Core_kernel__.Import.int ‑> read_write) Bin_prot.Read.readerval bin_reader_read_write : read_write Bin_prot.Type_class.readerval bin_size_read_write : read_write Bin_prot.Size.sizerval bin_write_read_write : read_write Bin_prot.Write.writerval bin_writer_read_write : read_write Bin_prot.Type_class.writerval bin_shape_read_write : Bin_prot.Shape.tval compare_read_write : read_write ‑> read_write ‑> Core_kernel__.Import.intval hash_fold_read_write : Base.Hash.state ‑> read_write ‑> Base.Hash.stateval hash_read_write : read_write ‑> Base.Hash.hash_valueval read_write_of_sexp : Base.Sexp.t ‑> read_writeval sexp_of_read_write : read_write ‑> Base.Sexp.tinclude sig ... endval bin_perms : 'a Bin_prot.Type_class.t ‑> 'a perms Bin_prot.Type_class.tval bin_read_perms : 'a Bin_prot.Read.reader ‑> 'a perms Bin_prot.Read.readerval __bin_read_perms__ : 'a Bin_prot.Read.reader ‑> (Core_kernel__.Import.int ‑> 'a perms) Bin_prot.Read.readerval bin_reader_perms : 'a Bin_prot.Type_class.reader ‑> 'a perms Bin_prot.Type_class.readerval bin_size_perms : 'a Bin_prot.Size.sizer ‑> 'a perms Bin_prot.Size.sizerval bin_write_perms : 'a Bin_prot.Write.writer ‑> 'a perms Bin_prot.Write.writerval bin_writer_perms : 'a Bin_prot.Type_class.writer ‑> 'a perms Bin_prot.Type_class.writerval bin_shape_perms : Bin_prot.Shape.t ‑> Bin_prot.Shape.tval compare_perms : ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a perms ‑> 'a perms ‑> Core_kernel__.Import.intval hash_fold_perms : (Base.Hash.state ‑> 'a ‑> Base.Hash.state) ‑> Base.Hash.state ‑> 'a perms ‑> Base.Hash.stateval perms_of_sexp : (Base.Sexp.t ‑> 'a) ‑> Base.Sexp.t ‑> 'a permsval sexp_of_perms : ('a ‑> Base.Sexp.t) ‑> 'a perms ‑> Base.Sexp.tinclude Result.Exportval is_ok : (_, _) Base.Result.t ‑> boolval is_error : (_, _) Base.Result.t ‑> boolexception Bug of Core_kernel__.Import.stringexception C_malloc_exn of Core_kernel__.Import.int * Core_kernel__.Import.intRaised if malloc in C bindings fail (errno * size).
exception Finally of Core_kernel__.Import.Exn.t * Core_kernel__.Import.Exn.tval phys_same : 'a ‑> 'b ‑> boolphys_same is like phys_equal, but with a more general type. phys_same is useful
when dealing with existential types, when one has a packed value and an unpacked value
that one wants to check are physically equal. One can't use phys_equal in such a
situation because the types are different.
val print_s : ?mach:unit ‑> Sexp.t ‑> unitval bprintf : Caml.Buffer.t ‑> ('a, Caml.Buffer.t, unit) Pervasives.format ‑> 'aval eprintf : ('a, Stdio.Out_channel.t, Base.unit) Base.format ‑> 'aval error : ?strict:unit ‑> string ‑> 'a ‑> ('a ‑> Base.Sexp.t) ‑> 'b Or_error.tval error_s : Base.Sexp.t ‑> 'a Or_error.tval failwithp : ?strict:Core_kernel__.Import.unit ‑> Lexing.position ‑> Core_kernel__.Import.string ‑> 'a ‑> ('a ‑> Base.Sexp.t) ‑> 'bval failwiths : ?strict:Core_kernel__.Import.unit ‑> ?here:Lexing.position ‑> Core_kernel__.Import.string ‑> 'a ‑> ('a ‑> Base.Sexp.t) ‑> 'bval force : 'a Base.Lazy.t ‑> 'aval fprintf : Stdio.Out_channel.t ‑> ('a, Stdio.Out_channel.t, Base.unit) Base.format ‑> 'aval is_none : 'a Option.t ‑> boolval is_some : 'a Option.t ‑> boolval ok_exn : 'a Or_error.t ‑> 'aval printf : ('a, Stdio.Out_channel.t, Base.unit) Base.format ‑> 'aval raise_s : Base.Sexp.t ‑> 'aval stage : 'a ‑> 'a Core_kernel__.Import.Staged.tval unstage : 'a Core_kernel__.Import.Staged.t ‑> 'aval with_return : ('a Core_kernel__.Import.With_return.return ‑> 'a) ‑> 'aval with_return_option : ('a Core_kernel__.Import.With_return.return ‑> unit) ‑> 'a optioninclude Typerep_lib.Std_internaltype-safe runtime type introspection
val typerep_of_int : int Typerep.tval typerep_of_int32 : int32 Typerep.tval typerep_of_int64 : int64 Typerep.tval typerep_of_nativeint : nativeint Typerep.tval typerep_of_char : char Typerep.tval typerep_of_float : float Typerep.tval typerep_of_string : string Typerep.tval typerep_of_bytes : bytes Typerep.tval typerep_of_bool : bool Typerep.tval typerep_of_unit : unit Typerep.tval value_tuple0 : tuple0val typename_of_int : int Typerep_lib.Typename.tval typename_of_int32 : int32 Typerep_lib.Typename.tval typename_of_int64 : int64 Typerep_lib.Typename.tval typename_of_nativeint : nativeint Typerep_lib.Typename.tval typename_of_char : char Typerep_lib.Typename.tval typename_of_float : float Typerep_lib.Typename.tval typename_of_string : string Typerep_lib.Typename.tval typename_of_bytes : bytes Typerep_lib.Typename.tval typename_of_bool : bool Typerep_lib.Typename.tval typename_of_unit : unit Typerep_lib.Typename.tval typename_of_option : 'a Typerep_lib.Typename.t ‑> 'a option Typerep_lib.Typename.tval typename_of_list : 'a Typerep_lib.Typename.t ‑> 'a list Typerep_lib.Typename.tval typename_of_array : 'a Typerep_lib.Typename.t ‑> 'a array Typerep_lib.Typename.tval typename_of_lazy_t : 'a Typerep_lib.Typename.t ‑> 'a lazy_t Typerep_lib.Typename.tval typename_of_ref : 'a Typerep_lib.Typename.t ‑> 'a Pervasives.ref Typerep_lib.Typename.tval typename_of_function : 'a Typerep_lib.Typename.t ‑> 'b Typerep_lib.Typename.t ‑> ('a ‑> 'b) Typerep_lib.Typename.tval typename_of_tuple0 : tuple0 Typerep_lib.Typename.tval typename_of_tuple2 : 'a Typerep_lib.Typename.t ‑> 'b Typerep_lib.Typename.t ‑> ('a * 'b) Typerep_lib.Typename.tval typename_of_tuple3 : 'a Typerep_lib.Typename.t ‑> 'b Typerep_lib.Typename.t ‑> 'c Typerep_lib.Typename.t ‑> ('a * 'b * 'c) Typerep_lib.Typename.tval typename_of_tuple4 : 'a Typerep_lib.Typename.t ‑> 'b Typerep_lib.Typename.t ‑> 'c Typerep_lib.Typename.t ‑> 'd Typerep_lib.Typename.t ‑> ('a * 'b * 'c * 'd) Typerep_lib.Typename.tval typename_of_tuple5 : 'a Typerep_lib.Typename.t ‑> 'b Typerep_lib.Typename.t ‑> 'c Typerep_lib.Typename.t ‑> 'd Typerep_lib.Typename.t ‑> 'e Typerep_lib.Typename.t ‑> ('a * 'b * 'c * 'd * 'e) Typerep_lib.Typename.tinclude sig ... end with type a array := a Core_kernel__.Import.array with type bool := Core_kernel__.Import.bool with type char := Core_kernel__.Import.char with type float := Core_kernel__.Import.float with type int := Core_kernel__.Import.int with type int32 := Core_kernel__.Import.int32 with type int64 := Core_kernel__.Import.int64 with type a list := a Core_kernel__.Import.list with type nativeint := Core_kernel__.Import.nativeint with type a option := a Core_kernel__.Import.option with type string := Core_kernel__.Import.string with type bytes := Core_kernel__.Import.bytes with type a lazy_t := a lazy_t with type a ref := a ref with type unit := Core_kernel__.Import.unitinclude sig ... endval bin_array : 'a Bin_prot.Type_class.t ‑> 'a array Bin_prot.Type_class.tval bin_read_array : 'a Bin_prot.Read.reader ‑> 'a array Bin_prot.Read.readerval __bin_read_array__ : 'a Bin_prot.Read.reader ‑> (Core_kernel__.Import.int ‑> 'a array) Bin_prot.Read.readerval bin_reader_array : 'a Bin_prot.Type_class.reader ‑> 'a array Bin_prot.Type_class.readerval bin_size_array : 'a Bin_prot.Size.sizer ‑> 'a array Bin_prot.Size.sizerval bin_write_array : 'a Bin_prot.Write.writer ‑> 'a array Bin_prot.Write.writerval bin_writer_array : 'a Bin_prot.Type_class.writer ‑> 'a array Bin_prot.Type_class.writerval bin_shape_array : Bin_prot.Shape.t ‑> Bin_prot.Shape.tval compare_array : ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a array ‑> 'a array ‑> Core_kernel__.Import.intval array_of_sexp : (Base.Sexp.t ‑> 'a) ‑> Base.Sexp.t ‑> 'a arrayval sexp_of_array : ('a ‑> Base.Sexp.t) ‑> 'a array ‑> Base.Sexp.tval typerep_of_array : 'a Typerep_lib.Std.Typerep.t ‑> 'a array Typerep_lib.Std.Typerep.tval typename_of_array : 'a Typerep_lib.Std.Typename.t ‑> 'a array Typerep_lib.Std.Typename.tinclude sig ... endval bin_bool : bool Bin_prot.Type_class.tval bin_read_bool : bool Bin_prot.Read.readerval __bin_read_bool__ : (Core_kernel__.Import.int ‑> bool) Bin_prot.Read.readerval bin_reader_bool : bool Bin_prot.Type_class.readerval bin_size_bool : bool Bin_prot.Size.sizerval bin_write_bool : bool Bin_prot.Write.writerval bin_writer_bool : bool Bin_prot.Type_class.writerval bin_shape_bool : Bin_prot.Shape.tval compare_bool : bool ‑> bool ‑> Core_kernel__.Import.intval hash_fold_bool : Base.Hash.state ‑> bool ‑> Base.Hash.stateval hash_bool : bool ‑> Base.Hash.hash_valueval bool_of_sexp : Base.Sexp.t ‑> boolval sexp_of_bool : bool ‑> Base.Sexp.tval typerep_of_bool : bool Typerep_lib.Std.Typerep.tval typename_of_bool : bool Typerep_lib.Std.Typename.tinclude sig ... endval bin_char : char Bin_prot.Type_class.tval bin_read_char : char Bin_prot.Read.readerval __bin_read_char__ : (Core_kernel__.Import.int ‑> char) Bin_prot.Read.readerval bin_reader_char : char Bin_prot.Type_class.readerval bin_size_char : char Bin_prot.Size.sizerval bin_write_char : char Bin_prot.Write.writerval bin_writer_char : char Bin_prot.Type_class.writerval bin_shape_char : Bin_prot.Shape.tval compare_char : char ‑> char ‑> Core_kernel__.Import.intval hash_fold_char : Base.Hash.state ‑> char ‑> Base.Hash.stateval hash_char : char ‑> Base.Hash.hash_valueval char_of_sexp : Base.Sexp.t ‑> charval sexp_of_char : char ‑> Base.Sexp.tval typerep_of_char : char Typerep_lib.Std.Typerep.tval typename_of_char : char Typerep_lib.Std.Typename.tinclude sig ... endval bin_float : float Bin_prot.Type_class.tval bin_read_float : float Bin_prot.Read.readerval __bin_read_float__ : (Core_kernel__.Import.int ‑> float) Bin_prot.Read.readerval bin_reader_float : float Bin_prot.Type_class.readerval bin_size_float : float Bin_prot.Size.sizerval bin_write_float : float Bin_prot.Write.writerval bin_writer_float : float Bin_prot.Type_class.writerval bin_shape_float : Bin_prot.Shape.tval compare_float : float ‑> float ‑> Core_kernel__.Import.intval hash_fold_float : Base.Hash.state ‑> float ‑> Base.Hash.stateval hash_float : float ‑> Base.Hash.hash_valueval float_of_sexp : Base.Sexp.t ‑> floatval sexp_of_float : float ‑> Base.Sexp.tval typerep_of_float : float Typerep_lib.Std.Typerep.tval typename_of_float : float Typerep_lib.Std.Typename.tinclude sig ... endval bin_int : int Bin_prot.Type_class.tval bin_read_int : int Bin_prot.Read.readerval __bin_read_int__ : (int ‑> int) Bin_prot.Read.readerval bin_reader_int : int Bin_prot.Type_class.readerval bin_size_int : int Bin_prot.Size.sizerval bin_write_int : int Bin_prot.Write.writerval bin_writer_int : int Bin_prot.Type_class.writerval bin_shape_int : Bin_prot.Shape.tval hash_fold_int : Base.Hash.state ‑> int ‑> Base.Hash.stateval hash_int : int ‑> Base.Hash.hash_valueval int_of_sexp : Base.Sexp.t ‑> intval sexp_of_int : int ‑> Base.Sexp.tval typerep_of_int : int Typerep_lib.Std.Typerep.tval typename_of_int : int Typerep_lib.Std.Typename.tinclude sig ... endval bin_int32 : int32 Bin_prot.Type_class.tval bin_read_int32 : int32 Bin_prot.Read.readerval __bin_read_int32__ : (int ‑> int32) Bin_prot.Read.readerval bin_reader_int32 : int32 Bin_prot.Type_class.readerval bin_size_int32 : int32 Bin_prot.Size.sizerval bin_write_int32 : int32 Bin_prot.Write.writerval bin_writer_int32 : int32 Bin_prot.Type_class.writerval bin_shape_int32 : Bin_prot.Shape.tval hash_fold_int32 : Base.Hash.state ‑> int32 ‑> Base.Hash.stateval hash_int32 : int32 ‑> Base.Hash.hash_valueval int32_of_sexp : Base.Sexp.t ‑> int32val sexp_of_int32 : int32 ‑> Base.Sexp.tval typerep_of_int32 : int32 Typerep_lib.Std.Typerep.tval typename_of_int32 : int32 Typerep_lib.Std.Typename.tinclude sig ... endval bin_int64 : int64 Bin_prot.Type_class.tval bin_read_int64 : int64 Bin_prot.Read.readerval __bin_read_int64__ : (int ‑> int64) Bin_prot.Read.readerval bin_reader_int64 : int64 Bin_prot.Type_class.readerval bin_size_int64 : int64 Bin_prot.Size.sizerval bin_write_int64 : int64 Bin_prot.Write.writerval bin_writer_int64 : int64 Bin_prot.Type_class.writerval bin_shape_int64 : Bin_prot.Shape.tval hash_fold_int64 : Base.Hash.state ‑> int64 ‑> Base.Hash.stateval hash_int64 : int64 ‑> Base.Hash.hash_valueval int64_of_sexp : Base.Sexp.t ‑> int64val sexp_of_int64 : int64 ‑> Base.Sexp.tval typerep_of_int64 : int64 Typerep_lib.Std.Typerep.tval typename_of_int64 : int64 Typerep_lib.Std.Typename.tinclude sig ... endval bin_lazy_t : 'a Bin_prot.Type_class.t ‑> 'a lazy_t Bin_prot.Type_class.tval bin_read_lazy_t : 'a Bin_prot.Read.reader ‑> 'a lazy_t Bin_prot.Read.readerval __bin_read_lazy_t__ : 'a Bin_prot.Read.reader ‑> (int ‑> 'a lazy_t) Bin_prot.Read.readerval bin_reader_lazy_t : 'a Bin_prot.Type_class.reader ‑> 'a lazy_t Bin_prot.Type_class.readerval bin_size_lazy_t : 'a Bin_prot.Size.sizer ‑> 'a lazy_t Bin_prot.Size.sizerval bin_write_lazy_t : 'a Bin_prot.Write.writer ‑> 'a lazy_t Bin_prot.Write.writerval bin_writer_lazy_t : 'a Bin_prot.Type_class.writer ‑> 'a lazy_t Bin_prot.Type_class.writerval bin_shape_lazy_t : Bin_prot.Shape.t ‑> Bin_prot.Shape.tval hash_fold_lazy_t : (Base.Hash.state ‑> 'a ‑> Base.Hash.state) ‑> Base.Hash.state ‑> 'a lazy_t ‑> Base.Hash.stateval lazy_t_of_sexp : (Base.Sexp.t ‑> 'a) ‑> Base.Sexp.t ‑> 'a lazy_tval sexp_of_lazy_t : ('a ‑> Base.Sexp.t) ‑> 'a lazy_t ‑> Base.Sexp.tval typerep_of_lazy_t : 'a Typerep_lib.Std.Typerep.t ‑> 'a lazy_t Typerep_lib.Std.Typerep.tval typename_of_lazy_t : 'a Typerep_lib.Std.Typename.t ‑> 'a lazy_t Typerep_lib.Std.Typename.tinclude sig ... endval bin_list : 'a Bin_prot.Type_class.t ‑> 'a list Bin_prot.Type_class.tval bin_read_list : 'a Bin_prot.Read.reader ‑> 'a list Bin_prot.Read.readerval __bin_read_list__ : 'a Bin_prot.Read.reader ‑> (int ‑> 'a list) Bin_prot.Read.readerval bin_reader_list : 'a Bin_prot.Type_class.reader ‑> 'a list Bin_prot.Type_class.readerval bin_size_list : 'a Bin_prot.Size.sizer ‑> 'a list Bin_prot.Size.sizerval bin_write_list : 'a Bin_prot.Write.writer ‑> 'a list Bin_prot.Write.writerval bin_writer_list : 'a Bin_prot.Type_class.writer ‑> 'a list Bin_prot.Type_class.writerval bin_shape_list : Bin_prot.Shape.t ‑> Bin_prot.Shape.tval hash_fold_list : (Base.Hash.state ‑> 'a ‑> Base.Hash.state) ‑> Base.Hash.state ‑> 'a list ‑> Base.Hash.stateval list_of_sexp : (Base.Sexp.t ‑> 'a) ‑> Base.Sexp.t ‑> 'a listval sexp_of_list : ('a ‑> Base.Sexp.t) ‑> 'a list ‑> Base.Sexp.tval typerep_of_list : 'a Typerep_lib.Std.Typerep.t ‑> 'a list Typerep_lib.Std.Typerep.tval typename_of_list : 'a Typerep_lib.Std.Typename.t ‑> 'a list Typerep_lib.Std.Typename.tinclude sig ... endval bin_nativeint : nativeint Bin_prot.Type_class.tval bin_read_nativeint : nativeint Bin_prot.Read.readerval __bin_read_nativeint__ : (int ‑> nativeint) Bin_prot.Read.readerval bin_reader_nativeint : nativeint Bin_prot.Type_class.readerval bin_size_nativeint : nativeint Bin_prot.Size.sizerval bin_write_nativeint : nativeint Bin_prot.Write.writerval bin_writer_nativeint : nativeint Bin_prot.Type_class.writerval bin_shape_nativeint : Bin_prot.Shape.tval hash_fold_nativeint : Base.Hash.state ‑> nativeint ‑> Base.Hash.stateval hash_nativeint : nativeint ‑> Base.Hash.hash_valueval nativeint_of_sexp : Base.Sexp.t ‑> nativeintval sexp_of_nativeint : nativeint ‑> Base.Sexp.tval typerep_of_nativeint : nativeint Typerep_lib.Std.Typerep.tval typename_of_nativeint : nativeint Typerep_lib.Std.Typename.tinclude sig ... endval bin_option : 'a Bin_prot.Type_class.t ‑> 'a option Bin_prot.Type_class.tval bin_read_option : 'a Bin_prot.Read.reader ‑> 'a option Bin_prot.Read.readerval __bin_read_option__ : 'a Bin_prot.Read.reader ‑> (int ‑> 'a option) Bin_prot.Read.readerval bin_reader_option : 'a Bin_prot.Type_class.reader ‑> 'a option Bin_prot.Type_class.readerval bin_size_option : 'a Bin_prot.Size.sizer ‑> 'a option Bin_prot.Size.sizerval bin_write_option : 'a Bin_prot.Write.writer ‑> 'a option Bin_prot.Write.writerval bin_writer_option : 'a Bin_prot.Type_class.writer ‑> 'a option Bin_prot.Type_class.writerval bin_shape_option : Bin_prot.Shape.t ‑> Bin_prot.Shape.tval hash_fold_option : (Base.Hash.state ‑> 'a ‑> Base.Hash.state) ‑> Base.Hash.state ‑> 'a option ‑> Base.Hash.stateval option_of_sexp : (Base.Sexp.t ‑> 'a) ‑> Base.Sexp.t ‑> 'a optionval sexp_of_option : ('a ‑> Base.Sexp.t) ‑> 'a option ‑> Base.Sexp.tval typerep_of_option : 'a Typerep_lib.Std.Typerep.t ‑> 'a option Typerep_lib.Std.Typerep.tval typename_of_option : 'a Typerep_lib.Std.Typename.t ‑> 'a option Typerep_lib.Std.Typename.tinclude sig ... endval bin_string : string Bin_prot.Type_class.tval bin_read_string : string Bin_prot.Read.readerval __bin_read_string__ : (int ‑> string) Bin_prot.Read.readerval bin_reader_string : string Bin_prot.Type_class.readerval bin_size_string : string Bin_prot.Size.sizerval bin_write_string : string Bin_prot.Write.writerval bin_writer_string : string Bin_prot.Type_class.writerval bin_shape_string : Bin_prot.Shape.tval hash_fold_string : Base.Hash.state ‑> string ‑> Base.Hash.stateval hash_string : string ‑> Base.Hash.hash_valueval string_of_sexp : Base.Sexp.t ‑> stringval sexp_of_string : string ‑> Base.Sexp.tval typerep_of_string : string Typerep_lib.Std.Typerep.tval typename_of_string : string Typerep_lib.Std.Typename.tinclude sig ... endval bin_bytes : bytes Bin_prot.Type_class.tval bin_read_bytes : bytes Bin_prot.Read.readerval __bin_read_bytes__ : (int ‑> bytes) Bin_prot.Read.readerval bin_reader_bytes : bytes Bin_prot.Type_class.readerval bin_size_bytes : bytes Bin_prot.Size.sizerval bin_write_bytes : bytes Bin_prot.Write.writerval bin_writer_bytes : bytes Bin_prot.Type_class.writerval bin_shape_bytes : Bin_prot.Shape.tval bytes_of_sexp : Base.Sexp.t ‑> bytesval sexp_of_bytes : bytes ‑> Base.Sexp.tval typerep_of_bytes : bytes Typerep_lib.Std.Typerep.tval typename_of_bytes : bytes Typerep_lib.Std.Typename.tinclude sig ... endval bin_ref : 'a Bin_prot.Type_class.t ‑> 'a ref Bin_prot.Type_class.tval bin_read_ref : 'a Bin_prot.Read.reader ‑> 'a ref Bin_prot.Read.readerval __bin_read_ref__ : 'a Bin_prot.Read.reader ‑> (int ‑> 'a ref) Bin_prot.Read.readerval bin_reader_ref : 'a Bin_prot.Type_class.reader ‑> 'a ref Bin_prot.Type_class.readerval bin_size_ref : 'a Bin_prot.Size.sizer ‑> 'a ref Bin_prot.Size.sizerval bin_write_ref : 'a Bin_prot.Write.writer ‑> 'a ref Bin_prot.Write.writerval bin_writer_ref : 'a Bin_prot.Type_class.writer ‑> 'a ref Bin_prot.Type_class.writerval bin_shape_ref : Bin_prot.Shape.t ‑> Bin_prot.Shape.tval ref_of_sexp : (Base.Sexp.t ‑> 'a) ‑> Base.Sexp.t ‑> 'a refval sexp_of_ref : ('a ‑> Base.Sexp.t) ‑> 'a ref ‑> Base.Sexp.tval typerep_of_ref : 'a Typerep_lib.Std.Typerep.t ‑> 'a ref Typerep_lib.Std.Typerep.tval typename_of_ref : 'a Typerep_lib.Std.Typename.t ‑> 'a ref Typerep_lib.Std.Typename.tinclude sig ... endval bin_unit : unit Bin_prot.Type_class.tval bin_read_unit : unit Bin_prot.Read.readerval __bin_read_unit__ : (int ‑> unit) Bin_prot.Read.readerval bin_reader_unit : unit Bin_prot.Type_class.readerval bin_size_unit : unit Bin_prot.Size.sizerval bin_write_unit : unit Bin_prot.Write.writerval bin_writer_unit : unit Bin_prot.Type_class.writerval bin_shape_unit : Bin_prot.Shape.tval hash_fold_unit : Base.Hash.state ‑> unit ‑> Base.Hash.stateval hash_unit : unit ‑> Base.Hash.hash_valueval unit_of_sexp : Base.Sexp.t ‑> unitval sexp_of_unit : unit ‑> Base.Sexp.tval typerep_of_unit : unit Typerep_lib.Std.Typerep.tval typename_of_unit : unit Typerep_lib.Std.Typename.tinclude sig ... endval bin_float_array : float_array Bin_prot.Type_class.tval bin_read_float_array : float_array Bin_prot.Read.readerval __bin_read_float_array__ : (int ‑> float_array) Bin_prot.Read.readerval bin_reader_float_array : float_array Bin_prot.Type_class.readerval bin_size_float_array : float_array Bin_prot.Size.sizerval bin_write_float_array : float_array Bin_prot.Write.writerval bin_writer_float_array : float_array Bin_prot.Type_class.writerval bin_shape_float_array : Bin_prot.Shape.tval compare_float_array : float_array ‑> float_array ‑> intval float_array_of_sexp : Base.Sexp.t ‑> float_arrayval sexp_of_float_array : float_array ‑> Base.Sexp.tval typerep_of_float_array : float_array Typerep_lib.Std.Typerep.tval typename_of_float_array : float_array Typerep_lib.Std.Typename.tval sexp_of_exn : Core_kernel__.Import.Exn.t ‑> Base.Sexp.tval bin_shape_sexp_array : Bin_prot.Shape.t ‑> Bin_prot.Shape.tval bin_size_sexp_array : 'a Bin_prot.Size.sizer ‑> 'a Core_kernel__.Import.array ‑> intval bin_write_sexp_array : 'a Bin_prot.Write.writer ‑> Bin_prot.Common.buf ‑> pos:Bin_prot.Common.pos ‑> 'a Core_kernel__.Import.array ‑> Bin_prot.Common.posval bin_writer_sexp_array : 'a Bin_prot.Type_class.writer ‑> 'a Core_kernel__.Import.array Bin_prot.Type_class.writerval __bin_read_sexp_array__ : 'a Bin_prot.Read.reader ‑> Bin_prot.Common.buf ‑> pos_ref:Bin_prot.Common.pos_ref ‑> Core_kernel__.Import.int ‑> 'a Core_kernel__.Import.arrayval bin_read_sexp_array : 'a Bin_prot.Read.reader ‑> Bin_prot.Common.buf ‑> pos_ref:Bin_prot.Common.pos_ref ‑> 'a Core_kernel__.Import.arrayval bin_reader_sexp_array : 'a Bin_prot.Type_class.reader ‑> 'a Core_kernel__.Import.array Bin_prot.Type_class.readerval bin_sexp_array : 'a Bin_prot.Type_class.t ‑> 'a Core_kernel__.Import.array Bin_prot.Type_class.tval compare_sexp_array : a. ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a sexp_array ‑> 'a sexp_array ‑> Core_kernel__.Import.intmodule Typename_of_sexp_array = Core_kernel__.Std_internal.Typename_of_sexp_arrayval typename_of_sexp_array : 'a Typerep_lib.Typename.t ‑> 'a sexp_array Typerep_lib.Typename.tval typerep_of_sexp_array : a. 'a Typerep_lib.Std.Typerep.t ‑> 'a sexp_array Typerep_lib.Std.Typerep.tval bin_shape_sexp_bool : Bin_prot.Shape.tval bin_size_sexp_bool : Core_kernel__.Import.bool Bin_prot.Size.sizerval bin_write_sexp_bool : Core_kernel__.Import.bool Bin_prot.Write.writerval bin_writer_sexp_bool : Core_kernel__.Import.bool Bin_prot.Type_class.writerval __bin_read_sexp_bool__ : (Core_kernel__.Import.int ‑> Core_kernel__.Import.bool) Bin_prot.Read.readerval bin_read_sexp_bool : Core_kernel__.Import.bool Bin_prot.Read.readerval bin_reader_sexp_bool : Core_kernel__.Import.bool Bin_prot.Type_class.readerval bin_sexp_bool : Core_kernel__.Import.bool Bin_prot.Type_class.tval compare_sexp_bool : sexp_bool ‑> sexp_bool ‑> Core_kernel__.Import.intval hash_fold_sexp_bool : Base.Hash.state ‑> sexp_bool ‑> Base.Hash.stateval hash_sexp_bool : sexp_bool ‑> Base.Hash.hash_valuemodule Typename_of_sexp_bool = Core_kernel__.Std_internal.Typename_of_sexp_boolval typename_of_sexp_bool : sexp_bool Typerep_lib.Typename.tval typerep_of_sexp_bool : sexp_bool Typerep_lib.Std.Typerep.tval bin_shape_sexp_list : Bin_prot.Shape.t ‑> Bin_prot.Shape.tval bin_size_sexp_list : 'a Bin_prot.Size.sizer ‑> 'a Core_kernel__.Import.list ‑> intval bin_write_sexp_list : 'a Bin_prot.Write.writer ‑> Bin_prot.Common.buf ‑> pos:Bin_prot.Common.pos ‑> 'a Core_kernel__.Import.list ‑> Bin_prot.Common.posval bin_writer_sexp_list : 'a Bin_prot.Type_class.writer ‑> 'a Core_kernel__.Import.list Bin_prot.Type_class.writerval __bin_read_sexp_list__ : 'a Bin_prot.Read.reader ‑> Bin_prot.Common.buf ‑> pos_ref:Bin_prot.Common.pos_ref ‑> Core_kernel__.Import.int ‑> 'a Core_kernel__.Import.listval bin_read_sexp_list : 'a Bin_prot.Read.reader ‑> Bin_prot.Common.buf ‑> pos_ref:Bin_prot.Common.pos_ref ‑> 'a Core_kernel__.Import.listval bin_reader_sexp_list : 'a Bin_prot.Type_class.reader ‑> 'a Core_kernel__.Import.list Bin_prot.Type_class.readerval bin_sexp_list : 'a Bin_prot.Type_class.t ‑> 'a Core_kernel__.Import.list Bin_prot.Type_class.tval compare_sexp_list : a. ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a sexp_list ‑> 'a sexp_list ‑> Core_kernel__.Import.intval hash_fold_sexp_list : a. (Base.Hash.state ‑> 'a ‑> Base.Hash.state) ‑> Base.Hash.state ‑> 'a sexp_list ‑> Base.Hash.statemodule Typename_of_sexp_list = Core_kernel__.Std_internal.Typename_of_sexp_listval typename_of_sexp_list : 'a Typerep_lib.Typename.t ‑> 'a sexp_list Typerep_lib.Typename.tval typerep_of_sexp_list : a. 'a Typerep_lib.Std.Typerep.t ‑> 'a sexp_list Typerep_lib.Std.Typerep.tval bin_shape_sexp_option : Bin_prot.Shape.t ‑> Bin_prot.Shape.tval bin_size_sexp_option : 'a Bin_prot.Size.sizer ‑> 'a Core_kernel__.Import.option ‑> intval bin_write_sexp_option : 'a Bin_prot.Write.writer ‑> Bin_prot.Common.buf ‑> pos:Bin_prot.Common.pos ‑> 'a Core_kernel__.Import.option ‑> Bin_prot.Common.posval bin_writer_sexp_option : 'a Bin_prot.Type_class.writer ‑> 'a Core_kernel__.Import.option Bin_prot.Type_class.writerval __bin_read_sexp_option__ : 'a Bin_prot.Read.reader ‑> Bin_prot.Common.buf ‑> pos_ref:Bin_prot.Common.pos_ref ‑> Core_kernel__.Import.int ‑> 'a Core_kernel__.Import.optionval bin_read_sexp_option : 'a Bin_prot.Read.reader ‑> Bin_prot.Common.buf ‑> pos_ref:Bin_prot.Common.pos_ref ‑> 'a Core_kernel__.Import.optionval bin_reader_sexp_option : 'a Bin_prot.Type_class.reader ‑> 'a Core_kernel__.Import.option Bin_prot.Type_class.readerval bin_sexp_option : 'a Bin_prot.Type_class.t ‑> 'a Core_kernel__.Import.option Bin_prot.Type_class.tval compare_sexp_option : a. ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a sexp_option ‑> 'a sexp_option ‑> Core_kernel__.Import.intval hash_fold_sexp_option : a. (Base.Hash.state ‑> 'a ‑> Base.Hash.state) ‑> Base.Hash.state ‑> 'a sexp_option ‑> Base.Hash.statemodule Typename_of_sexp_option = Core_kernel__.Std_internal.Typename_of_sexp_optionval typename_of_sexp_option : 'a Typerep_lib.Typename.t ‑> 'a sexp_option Typerep_lib.Typename.tval typerep_of_sexp_option : a. 'a Typerep_lib.Std.Typerep.t ‑> 'a sexp_option Typerep_lib.Std.Typerep.tval bin_shape_sexp_opaque : Bin_prot.Shape.t ‑> Bin_prot.Shape.tval bin_writer_sexp_opaque : 'a Bin_prot.Type_class.writer ‑> 'a Bin_prot.Type_class.writerval __bin_read_sexp_opaque__ : 'a ‑> 'b ‑> pos_ref:Bin_prot.Common.pos ref ‑> 'c ‑> 'dval bin_reader_sexp_opaque : 'a Bin_prot.Type_class.reader ‑> 'a Bin_prot.Type_class.readerval bin_sexp_opaque : 'a Bin_prot.Type_class.t ‑> 'a Bin_prot.Type_class.tval compare_sexp_opaque : a. ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a sexp_opaque ‑> 'a sexp_opaque ‑> Core_kernel__.Import.intval hash_fold_sexp_opaque : a. (Base.Hash.state ‑> 'a ‑> Base.Hash.state) ‑> Base.Hash.state ‑> 'a sexp_opaque ‑> Base.Hash.statemodule Typename_of_sexp_opaque = Core_kernel__.Std_internal.Typename_of_sexp_opaqueval typename_of_sexp_opaque : 'a Typerep_lib.Typename.t ‑> 'a sexp_opaque Typerep_lib.Typename.tval typerep_of_sexp_opaque : a. 'a Typerep_lib.Std.Typerep.t ‑> 'a sexp_opaque Typerep_lib.Std.Typerep.tinclude Core_kernel__.Import.Not_foundexception Not_foundexception Not_found_s of Sexplib0.Sexp.tStd defines modules exposed by Core_kernel that are overridden by Core.
module Caml = Camlmodule Int_replace_polymorphic_compare : sig ... endJust a wrapper around
Base.Not_exposed_properly.Import.Int_replace_polymorphic_compare
module Core_kernel_stable = Core_kernel__.Stablemodule Map_intf : sig ... endThis module defines interfaces used in Map. See those docs for a description
of the design.
module Md5 : sig ... endThis module implements the MD5 message-digest algorithm as described IETF RFC 1321.
t is the result type and val digest_string : string -> t is the implementation of
the algorithm itself.
module Digest = Md5module Optional_syntax_intf : sig ... endmodule Perms : sig ... endThese types are intended to be used as phantom types encoding the permissions on a given type.
module Set_intf : sig ... endmodule Stack_intf : sig ... endAn interface for stacks that follows Core's conventions, as opposed to OCaml's
standard Stack module.
module Time = Core_kernel__.Time_floatmodule Timing_wheel_ns_intf : sig ... endA specialized priority queue for a set of time-based alarms.
module Version_util : sig ... endThis module gives access to the same version/build information returned by
Command-based executables when called with the -version or -build-info flags
by $0 version (-build-info | -version) or $0 (-build-info | -version).
module Core_kernel_private = Std.Core_kernel_privateTo be used in implementing Core, but not by end users.