This module implements the MD5
message-digest algorithm as described IETF RFC 1321.
t
is the result type and val digest_string : string -> t
is the implementation of
the algorithm itself.
This is currently a thin wrapper over the Digest
module in INRIA's standard
library.
module Stable : sig ... end
module As_binary_string : sig ... end
Both bin_io and sexp serializations produce a binary 16-character string.
Intended to represent a 16-byte string that is the output of MD5 algorithm.
Note that any 16-byte string can be converted to this type, so a value of type t
is
not an evidence of someone having found an input corresponding to this output.
include sig ... end
val bin_t : t Bin_prot.Type_class.t
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (int ‑> t) Bin_prot.Read.reader
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_shape_t : Bin_prot.Shape.t
val t_of_sexp : Base.Sexp.t ‑> t
val sexp_of_t : t ‑> Base.Sexp.t
val hash_fold_t : Base.Hash.state ‑> t ‑> Base.Hash.state
val hash : t ‑> Base.Hash.hash_value
include Interfaces.Comparable with type t := t
include Core_kernel__.Comparable_intf.S_common
include Base.Comparable.S
include Base__.Comparable_intf.Polymorphic_compare
ascending
is identical to compare
. descending x y = ascending y x
. These are
intended to be mnemonic when used like List.sort ~compare:ascending
and List.sort
~cmp:descending
, since they cause the list to be sorted in ascending or descending
order, respectively.
clamp_exn t ~min ~max
returns t'
, the closest value to t
such that
between t' ~low:min ~high:max
is true.
Raises if not (min <= max)
.
val clamp : t ‑> min:t ‑> max:t ‑> t Base.Or_error.t
include Base.Comparator.S with type t := t
val comparator : (t, comparator_witness) Base.Comparator.comparator
include Base__.Comparable_intf.Validate with type t := t
val validate_lbound : min:t Base.Maybe_bound.t ‑> t Base.Validate.check
val validate_ubound : max:t Base.Maybe_bound.t ‑> t Base.Validate.check
val validate_bound : min:t Base.Maybe_bound.t ‑> max:t Base.Maybe_bound.t ‑> t Base.Validate.check
module Replace_polymorphic_compare : Core_kernel__.Comparable_intf.Polymorphic_compare with type t := t
module Map : Map.S with type Key.t = t with type Key.comparator_witness = comparator_witness
module Set : Set.S with type Elt.t = t with type Elt.comparator_witness = comparator_witness
include Interfaces.Binable with type t := t
include Core_kernel__.Binable0.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (int ‑> t) Bin_prot.Read.reader
This function only needs implementation if t
exposed to be a polymorphic variant.
Despite what the type reads, this does *not* produce a function after reading;
instead it takes the constructor tag (int) before reading and reads the rest of the
variant t
afterwards.
val bin_shape_t : Bin_prot.Shape.t
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_t : t Bin_prot.Type_class.t
include Interfaces.Hashable with type t := t
include Hashable.Common
include sig ... end
val compare : t ‑> t ‑> Core_kernel__.Import.int
val hash_fold_t : Base.Hash.state ‑> t ‑> Base.Hash.state
val hash : t ‑> Base.Hash.hash_value
val hashable : t Hashtbl.Hashable.t
module Hash_set : Hash_set.S with type elt = t
module Hash_queue : Hash_queue.S with type Key.t = t
val of_binary_exn : string ‑> t
val to_hex : t ‑> string
to_hex
prints each byte of t
as a big-endian sequence of 2 hex digits
(e.g. byte 31 is written as "1f") and then concatenates them.
For example,
Md5.to_hex (Md5.digest_string "a") =
Md5.to_hex (
Md5.of_binary_exn
"\x0c\xc1\x75\xb9\xc0\xf1\xb6\xa8\x31\xc3\x99\xe2\x69\x77\x26\x61") =
"0cc175b9c0f1b6a831c399e269772661"
val of_hex_exn : string ‑> t
The inverse of to_hex
. This function ignores case. It will raise an
exception if the string is not a 32-byte-long string of hex digits.
val digest_string : string ‑> t
val digest_bytes : bytes ‑> t
val digest_subbytes : bytes ‑> pos:int ‑> len:int ‑> t
digest_subbytes m ~pos ~len
computes Md5 digest of the substring of m
of length
len
starting at pos
.
val digest_file_blocking_without_releasing_runtime_lock : string ‑> t
digest_file_blocking_without_releasing_runtime_lock filename
reads the contents of
file filename
and computes its digest.
WARNING: This function does digest computation with OCaml global lock held, so it can
be slow and make the other threads starve. Use Core.Md5.digest_file_blocking
instead.
val digest_channel_blocking_without_releasing_runtime_lock : Pervasives.in_channel ‑> len:int ‑> t
Reads len
bytes from the given channel and computes md5 digest of that.
WARNING: This function does digest computation with OCaml global lock held, so it can
be slow and make the other threads starve. Use Core.Md5.digest_fd_blocking
instead.
val input_blocking : Pervasives.in_channel ‑> t
Reads an Md5 digest from the given channel (in a format written by output_blocking
)
val output_blocking : t ‑> Pervasives.out_channel ‑> unit
Writes the Md5 digest to the given channel.
val file : string ‑> t
val channel : Pervasives.in_channel ‑> int ‑> t
val output : Pervasives.out_channel ‑> t ‑> unit
val input : Pervasives.in_channel ‑> t
val digest_bin_prot : 'a Bin_prot.Type_class.writer ‑> 'a ‑> t
digest_bin_prot w x
digests the serialization of x
by w
.
It is a cheap way (in dev time) to compute the digest of an ocaml value, for a
fixed and deterministic serialization function.
It is currently implemented inefficiently and allocates large strings.