include sig ... end
val sexp_of_t : t ‑> Sexplib.Sexp.t
val typerep_of_t : t Typerep_lib.Std.Typerep.t
val typename_of_t : t Typerep_lib.Std.Typename.t
include Core__.Import.Identifiable with type t := t
include sig ... end
val t_of_sexp : Sexplib.Sexp.t ‑> t
val sexp_of_t : t ‑> Sexplib.Sexp.t
val bin_t : t Bin_prot.Type_class.t
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (Core_kernel__.Import.int ‑> t) Bin_prot.Read.reader
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_shape_t : Bin_prot.Shape.t
include Core_kernel__.Import.Stringable.S with type t := t
val of_string : string ‑> t
val to_string : t ‑> string
include Core_kernel.Comparable.S_binable with type t := t
include Core_kernel__.Comparable_intf.S_common
include Base.Comparable_intf.S
include Base.Comparable_intf.Polymorphic_compare
ascending
is identical to compare
. descending x y = ascending y x
. These are
intended to be mnemonic when used like List.sort ~cmp:ascending
and List.sort
~cmp:descending
, since they cause the list to be sorted in ascending or descending
order, respectively.
clamp_exn t ~min ~max
returns t'
, the closest value to t
such that
between t' ~low:min ~high:max
is true.
Raises if not (min <= max)
.
val clamp : t ‑> min:t ‑> max:t ‑> t Base.Or_error.t
include Base.Comparator.S with type t := t
val comparator : (t, comparator_witness) Base.Comparator.comparator
include Base.Comparable_intf.Validate with type t := t
val validate_lbound : min:t Base.Maybe_bound.t ‑> t Base.Validate.check
val validate_ubound : max:t Base.Maybe_bound.t ‑> t Base.Validate.check
val validate_bound : min:t Base.Maybe_bound.t ‑> max:t Base.Maybe_bound.t ‑> t Base.Validate.check
module Replace_polymorphic_compare : Core_kernel__.Comparable_intf.Polymorphic_compare with type t := t
include Core_kernel__.Comparable_intf.Map_and_set_binable with type t := t with type comparator_witness := comparator_witness
include Core_kernel.Comparator.S with type t := t
val comparator : (t, comparator_witness) Core_kernel.Comparator.comparator
module Map : Core_kernel__.Core_map.S_binable with type Key.t = t with type Key.comparator_witness = comparator_witness
module Set : Core_kernel__.Core_set.S_binable with type Elt.t = t with type Elt.comparator_witness = comparator_witness
include Core_kernel.Hashable.S_binable with type t := t
val hash : t ‑> Core_kernel__.Import.int
val hashable : t Core_kernel.Hashable.Hashtbl.Hashable.t
module Table : Core_kernel.Hashable.Hashtbl.S_binable with type key = t
module Hash_set : Core_kernel.Hash_set.S_binable with type elt = t
module Hash_queue : Core_kernel.Hash_queue.S with type Key.t = t
include Core_kernel__.Import.Pretty_printer.S with type t := t
val pp : Caml.Format.formatter ‑> t ‑> unit
include Core__.Import.Comparable.With_zero with type t := t
val validate_positive : t Base.Validate.check
val validate_non_negative : t Base.Validate.check
val validate_negative : t Base.Validate.check
val validate_non_positive : t Base.Validate.check
val is_positive : t ‑> bool
val is_non_negative : t ‑> bool
val is_negative : t ‑> bool
val is_non_positive : t ‑> bool
val sign : t ‑> Base__.Sign0.t
Returns Neg
, Zero
, or Pos
in a way consistent with the above functions.
val nanosecond : t
val microsecond : t
val millisecond : t
val second : t
val minute : t
val hour : t
val day : t
val of_ns : float ‑> t
val of_us : float ‑> t
val of_ms : float ‑> t
val of_sec : float ‑> t
val of_min : float ‑> t
val of_hr : float ‑> t
val of_day : float ‑> t
val to_ns : t ‑> float
val to_us : t ‑> float
val to_ms : t ‑> float
val to_sec : t ‑> float
val to_min : t ‑> float
val to_hr : t ‑> float
val to_day : t ‑> float
val of_int_us : int ‑> t
val of_int_ms : int ‑> t
val of_int_sec : int ‑> t
val to_int_us : t ‑> int
val to_int_ms : t ‑> int
val to_int_sec : t ‑> int
val zero : t
val min_value : t
val max_value : t
val div : t ‑> t ‑> Core__.Import.Int63.t
val create : ?sign:Core__.Import.Sign.t ‑> ?day:int ‑> ?hr:int ‑> ?min:int ‑> ?sec:int ‑> ?ms:int ‑> ?us:int ‑> ?ns:int ‑> unit ‑> t
Overflows silently.
val to_short_string : t ‑> string
val to_unit_of_time : t ‑> Core__.Import.Unit_of_time.t
val of_unit_of_time : Core__.Import.Unit_of_time.t ‑> t
val to_string_hum : ?delimiter:char ‑> ?decimals:int ‑> ?align_decimal:bool ‑> ?unit_of_time:Core__.Import.Unit_of_time.t ‑> t ‑> string
See Time.Span.to_string_hum
.
val to_span : t ‑> Core__.Import_time.Time.Span.t
Time.t is precise to approximately 0.24us in 2014. If to_span
converts to the
closest Time.Span.t
, we have stability problems: converting back yields a
different t
, sometimes different enough to have a different external
representation, because the conversion back and forth crosses a rounding boundary.
To stabilize conversion, we treat Time.t
as having 1us precision: to_span
and
of_span
both round to the nearest 1us.
Around 135y magnitudes, Time.Span.t
no longer has 1us resolution. At that point,
to_span
and of_span
raise.
The concern with stability is in part due to an earlier incarnation of
Timing_wheel
that had surprising behavior due to rounding of floating-point times.
Timing_wheel was since re-implemented to use integer Time_ns
, and to treat
floating-point Time
s as equivalence classes according to the Time_ns
that they
round to. See Timing_wheel_float
for details.
val of_span : Core__.Import_time.Time.Span.t ‑> t
val to_int_ns : t ‑> int
Will raise on 32-bit platforms with spans corresponding to contemporary now.
Consider to_int63_ns
instead.
val of_int_ns : int ‑> t
val to_proportional_float : t ‑> float
The only condition to_proportional_float
is supposed to satisfy is that for all
t1, t2 : t
: to_proportional_float t1 /. to_proportional_float t2 = t1 // t2
.
module Stable : sig ... end
val random : ?state:Core__.Import.Random.State.t ‑> unit ‑> t
module Option : sig ... end
Span.Option.t
is like Span.t option
, except that the value is immediate. This
module should mainly be used to avoid allocations.