Module Base.Int
include Base__.Int_intf.Int_without_module_types
include Base__.Int_intf.S with type t = int
include Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.t
val t_sexp_grammar : Sexp.Private.Raw_grammar.t
include Identifiable.S with type t := t
val hash_fold_t : Hash.state -> t -> Hash.stateval hash : t -> Hash.hash_value
include Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.t
include Comparable.S with type t := t
include Base__.Comparable_intf.Polymorphic_compare
val ascending : t -> t -> intascendingis identical tocompare.descending x y = ascending y x. These are intended to be mnemonic when used likeList.sort ~compare:ascendingandList.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.
val descending : t -> t -> intval between : t -> low:t -> high:t -> boolbetween t ~low ~highmeanslow <= t <= high
val clamp_exn : t -> min:t -> max:t -> tclamp_exn t ~min ~maxreturnst', the closest value totsuch thatbetween t' ~low:min ~high:maxis true.Raises if
not (min <= max).
val clamp : t -> min:t -> max:t -> t Or_error.t
include Comparator.S with type t := t
val comparator : (t, comparator_witness) Comparator.comparator
include Base__.Comparable_intf.Validate with type t := t
val validate_lbound : min:t Maybe_bound.t -> t Validate.checkval validate_ubound : max:t Maybe_bound.t -> t Validate.checkval validate_bound : min:t Maybe_bound.t -> max:t Maybe_bound.t -> t Validate.check
include Comparable.With_zero with type t := t
val validate_positive : t Validate.checkval validate_non_negative : t Validate.checkval validate_negative : t Validate.checkval validate_non_positive : t Validate.checkval is_positive : t -> boolval is_non_negative : t -> boolval is_negative : t -> boolval is_non_positive : t -> boolval sign : t -> Base__.Sign0.tReturns
Neg,Zero, orPosin a way consistent with the above functions.
val to_string_hum : ?delimiter:char -> t -> stringdelimiteris an underscore by default.
Infix operators and constants
val zero : tval one : tval minus_one : tval (+) : t -> t -> tval (-) : t -> t -> tval (*) : t -> t -> tval (**) : t -> t -> tInteger exponentiation
Other common functions
include Base__.Int_intf.Round with type t := t
Successor and predecessor functions
Exponentiation
Bit-wise logical operations
Bit-shifting operations
The results are unspecified for negative shifts and shifts >= num_bits.
Increment and decrement functions for integer references
val decr : t Base__.Import.ref -> unitval incr : t Base__.Import.ref -> unit
Conversion functions to related integer types
val of_int32_exn : int32 -> tval to_int32_exn : t -> int32val of_int64_exn : int64 -> tval to_int64 : t -> int64val of_nativeint_exn : nativeint -> tval to_nativeint_exn : t -> nativeintval of_float_unchecked : float -> tof_float_uncheckedtruncates the given floating point number to an integer, rounding towards zero. The result is unspecified if the argument is nan or falls outside the range of representable integers.
val num_bits : intThe number of bits available in this integer type. Note that the integer representations are signed.
val max_value : tThe largest representable integer.
val min_value : tThe smallest representable integer.
val shift_right_logical : t -> int -> tShifts right, filling in with zeroes, which will not preserve the sign of the input.
val ceil_pow2 : t -> tceil_pow2 xreturns the smallest power of 2 that is greater than or equal tox. The implementation may only be called forx > 0. Example:ceil_pow2 17 = 32
val floor_pow2 : t -> tfloor_pow2 xreturns the largest power of 2 that is less than or equal tox. The implementation may only be called forx > 0. Example:floor_pow2 17 = 16
val ceil_log2 : t -> intceil_log2 xreturns the ceiling of log-base-2 ofx, and raises ifx <= 0.
val floor_log2 : t -> intfloor_log2 xreturns the floor of log-base-2 ofx, and raises ifx <= 0.
val is_pow2 : t -> boolis_pow2 xreturns true iffxis a power of 2.is_pow2raises ifx <= 0.
val clz : t -> intReturns the number of leading zeros in the binary representation of the input, as an integer between 0 and one less than
num_bits.The results are unspecified for
t = 0.
val ctz : t -> intReturns the number of trailing zeros in the binary representation of the input, as an integer between 0 and one less than
num_bits.The results are unspecified for
t = 0.
module O : Base__.Int_intf.Operators with type t := tA sub-module designed to be opened to make working with ints more convenient.
val max_value_30_bits : tmax_value_30_bits = 2^30 - 1. It is useful for writing tests that work on both 64-bit and 32-bit platforms.
Conversion functions
val of_int : int -> tval to_int : t -> intval of_int32 : int32 -> t optionval to_int32 : t -> int32 optionval of_int64 : int64 -> t optionval of_nativeint : nativeint -> t optionval to_nativeint : t -> nativeint
Truncating conversions
These functions return the least-significant bits of the input. In cases where optional conversions return Some x, truncating conversions return x.
Byte swap operations
Byte swap operations reverse the order of bytes in an integer. For example, Int32.bswap32 reorders the bottom 32 bits (or 4 bytes), turning 0x1122_3344 to 0x4433_2211. Byte swap functions exposed by Base use OCaml primitives to generate assembly instructions to perform the relevant byte swaps.
For a more extensive list of byteswap functions, see Int32 and Int64.
module type Hexable = Base__.Int_intf.Hexable
module type Operators = Base__.Int_intf.Operatorsmodule type Operators_unbounded = Base__.Int_intf.Operators_unboundedmodule type Round = Base__.Int_intf.Roundmodule type S = Base__.Int_intf.Smodule type S_common = Base__.Int_intf.S_commonmodule type S_unbounded = Base__.Int_intf.S_unbounded