Module Ecaml_value__Symbol
include Ecaml_value__.Symbol_intf.Symbol
include Ecaml_value.Value.Subtype
type value
type t
= private value
We expose
private value
for free identity conversions when the value is nested in some covariant type, e.g.(symbols : Symbol.t list :> Value.t list)
rather thanList.map symbols ~f:Symbol.to_value
.
val sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.t
val eq : t -> t -> bool
eq t1 t2 = Value.eq (to_value t1) (to_value t2)
, i.e.eq
checks whether the Emacs values underlyingt1
andt2
are physically equal. This is different thanphys_equal t1 t2
, because we don't always wrapeq
Emacs values inphys_equal
OCaml values. I.e.phys_equal t1 t2
implieseq t1 t2
, but not the converse.
val is_in_subtype : value -> bool
include Ecaml_value__.Valueable0.S with type t := t
val of_value_exn : Ecaml_value__.Value0.t -> t
val to_value : t -> Ecaml_value__.Value0.t
val type_ : t type_
include Ecaml_value.Value.Funcall with type t := t
val funcall0 : t -> value
val funcall1 : t -> value -> value
val funcall2 : t -> value -> value -> value
val funcall3 : t -> value -> value -> value -> value
val funcall4 : t -> value -> value -> value -> value -> value
val funcall5 : t -> value -> value -> value -> value -> value -> value
val funcallN : t -> value list -> value
val funcallN_array : t -> value array -> value
val funcall0_i : t -> unit
val funcall1_i : t -> value -> unit
val funcall2_i : t -> value -> value -> unit
val funcall3_i : t -> value -> value -> value -> unit
val funcall4_i : t -> value -> value -> value -> value -> unit
val funcall5_i : t -> value -> value -> value -> value -> value -> unit
val funcallN_i : t -> value list -> unit
val funcallN_array_i : t -> value array -> unit
val funcall_int_int_value_value_unit : t -> int -> int -> value -> value -> unit
val funcall_int_int_value_unit : t -> int -> int -> value -> unit
val intern : string -> t