Module Ecaml_value__.Symbol
include Ecaml_value__.Symbol_intf.Symbol
include Ecaml_value.Value.Subtype
type valuetype t= private valueWe expose
private valuefor free identity conversions when the value is nested in some covariant type, e.g.(symbols : Symbol.t list :> Value.t list)rather thanList.map symbols ~f:Symbol.to_value.
val sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.t
val eq : t -> t -> booleq t1 t2 = Value.eq (to_value t1) (to_value t2), i.e.eqchecks whether the Emacs values underlyingt1andt2are physically equal. This is different thanphys_equal t1 t2, because we don't always wrapeqEmacs values inphys_equalOCaml values. I.e.phys_equal t1 t2implieseq t1 t2, but not the converse.
val is_in_subtype : value -> bool
include Ecaml_value__.Valueable0.S with type t := t
val of_value_exn : Ecaml_value__.Value0.t -> tval to_value : t -> Ecaml_value__.Value0.tval type_ : t type_
include Ecaml_value.Value.Funcall with type t := t
val funcall0 : t -> valueval funcall1 : t -> value -> valueval funcall2 : t -> value -> value -> valueval funcall3 : t -> value -> value -> value -> valueval funcall4 : t -> value -> value -> value -> value -> valueval funcall5 : t -> value -> value -> value -> value -> value -> valueval funcallN : t -> value list -> valueval funcallN_array : t -> value array -> valueval funcall0_i : t -> unitval funcall1_i : t -> value -> unitval funcall2_i : t -> value -> value -> unitval funcall3_i : t -> value -> value -> value -> unitval funcall4_i : t -> value -> value -> value -> value -> unitval funcall5_i : t -> value -> value -> value -> value -> value -> unitval funcallN_i : t -> value list -> unitval funcallN_array_i : t -> value array -> unitval funcall_int_int_value_value_unit : t -> int -> int -> value -> value -> unitval funcall_int_int_value_unit : t -> int -> int -> value -> unit
val intern : string -> t