Module Ecaml.Input_event
(Info-goto-node "(elisp)Input Events")
include Ecaml__.Input_event0_intf.Input_event0_public with type t = Ecaml__.Input_event0.t
include Ecaml__.Import.Value.Subtype
type value
type t
= private value
We expose
private value
for free identity conversions when the value is nested in some covariant type, e.g.(symbols : Symbol.t list :> Value.t list)
rather thanList.map symbols ~f:Symbol.to_value
.
val sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.t
val eq : t -> t -> bool
eq t1 t2 = Value.eq (to_value t1) (to_value t2)
, i.e.eq
checks whether the Emacs values underlyingt1
andt2
are physically equal. This is different thanphys_equal t1 t2
, because we don't always wrapeq
Emacs values inphys_equal
OCaml values. I.e.phys_equal t1 t2
implieseq t1 t2
, but not the converse.
val is_in_subtype : value -> bool
include Ecaml_value__.Valueable0.S with type t := t
val of_value_exn : Ecaml_value__.Value0.t -> t
val to_value : t -> Ecaml_value__.Value0.t
val type_ : t type_
val description : t -> string
(describe-function 'single-key-description)
(Info-goto-node "(elisp)Describing Characters")
val create_exn : string -> t
create_exn string
is a specialized version ofKey_sequence.create
that raises unlessstring
denotes a key sequence of length one.(describe-function 'kbd)
(Info-goto-node "(elisp)Key Sequences")
Here are some example inputs:
"C-c" "C-M-q" "<f5>" "C-<f5>" "C-<right>" "<mouse-2>" "C-<down-mouse-3>"
val read : unit -> t
(describe-function 'read-event)
(Info-goto-node "(elisp)Reading One Event")
module Basic : sig ... end
val basic : t -> Basic.t
(describe-function 'event-basic-type)
(Info-goto-node "(elisp)Classifying Events")
module Modifier : sig ... end
val modifiers : t -> Modifier.t list
(describe-function 'event-modifiers)
(Info-goto-node "(elisp)Classifying Events")
val unread_command_input : t list Var.t
(describe-variable 'unread-command-events)
(Info-goto-node "(elisp)Event Input Misc")
val enqueue_unread_command_input : t list -> unit