Module Core_kernel.Blang
Boolean expressions.
Usage
For example, imagine writing a config file for an application that filters a stream of integers. Your goal is to keep only those integers that are multiples of either -3 or 5. Using Blang for this task, the code might look like:
module Property = struct
type t =
| Multiple_of of int
| Positive
| Negative
[@@deriving sexp]
let eval t num =
match t with
| Multiple_of n -> num % n = 0
| Positive -> num > 0
| Negative -> num < 0
end
type config = {
keep : Property.t Blang.t;
} [@@deriving sexp]
let config = {
keep =
Blang.t_of_sexp
Property.t_of_sexp
(Sexp.of_string
"(or (and negative (multiple_of 3)) (and positive (multiple_of 5)))";
}
let keep config num : bool =
Blang.eval config.keep (fun p -> Property.eval p num)Note how positive and negative and multiple_of become operators in a small, newly-defined boolean expression language that allows you to write statements like (and negative (multiple_of 3)).
Blang sexp syntax
The blang sexp syntax is almost exactly the derived one, except that:
1. Base properties are not marked explicitly. Thus, if your base property type has elements FOO, BAR, etc., then you could write the following Blang s-expressions:
FOO
(and FOO BAR)
(if FOO BAR BAZ)and so on. Note that this gets in the way of using the blang "keywords" in your value language.
2. And and Or take a variable number of arguments, so that one can (and probably should) write
(and FOO BAR BAZ QUX)
instead of
(and FOO (and BAR (and BAZ QUX)))
If you want to see the derived sexp, use Raw.sexp_of_t.
type 'a t= private|True|False|And of 'a t * 'a t|Or of 'a t * 'a t|Not of 'a t|If of 'a t * 'a t * 'a t|Base of 'aNote that the sexps are not directly inferred from the type below -- there are lots of fancy shortcuts. Also, the sexps for
'amust not look anything like blang sexps. Otherwiset_of_sexpwill fail. The directly inferred sexps are available viaRaw.sexp_of_t.
include Bin_prot.Binable.S1 with type 'a t := 'a t
val bin_shape_t : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_t : ('a, 'a t) Bin_prot.Size.sizer1val bin_write_t : ('a, 'a t) Bin_prot.Write.writer1val bin_read_t : ('a, 'a t) Bin_prot.Read.reader1val __bin_read_t__ : ('a, int -> 'a t) Bin_prot.Read.reader1val bin_writer_t : ('a, 'a t) Bin_prot.Type_class.S1.writerval bin_reader_t : ('a, 'a t) Bin_prot.Type_class.S1.readerval bin_t : ('a, 'a t) Bin_prot.Type_class.S1.t
val compare : ('a -> 'a -> Core_kernel__.Import.int) -> 'a t -> 'a t -> Core_kernel__.Import.intval hash_fold_t : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a t -> Base.Hash.state
include Ppx_sexp_conv_lib.Sexpable.S1 with type 'a t := 'a t
val t_of_sexp : (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a tval sexp_of_t : ('a -> Sexplib0.Sexp.t) -> 'a t -> Sexplib0.Sexp.t
module Raw : sig ... endRawprovides the automatically derivedsexp_of_t, useful in debugging the actual structure of the blang.
Smart constructors that simplify away constants whenever possible
module type Constructors = sig ... endinclude Constructors
val base : 'a -> 'a tval true_ : _ tval false_ : _ tval constant : Core_kernel__.Import.bool -> _ tfunction true -> true_ | false -> false_
val not_ : 'a t -> 'a tval and_ : 'a t Core_kernel__.Import.list -> 'a tn-ary
And
val or_ : 'a t Core_kernel__.Import.list -> 'a tn-ary
Or
module O : sig ... endval constant_value : 'a t -> Core_kernel__.Import.bool Core_kernel__.Import.optionconstant_value t = Some bifft = constant b
val gather_conjuncts : 'a t -> 'a t Core_kernel__.Import.listgather_conjuncts tgathers up all toplevel conjuncts int. For example,gather_conjuncts (and_ ts) = tsgather_conjuncts (And (t1, t2)) = gather_conjuncts t1 @ gather_conjuncts t2gather_conjuncts True = []gather_conjuncts t = [t]whentmatches neitherAnd (_, _)norTrue
val gather_disjuncts : 'a t -> 'a t Core_kernel__.Import.listgather_disjuncts tgathers up all toplevel disjuncts int. For example,gather_disjuncts (or_ ts) = tsgather_disjuncts (Or (t1, t2)) = gather_disjuncts t1 @ gather_disjuncts t2gather_disjuncts False = []gather_disjuncts t = [t]whentmatches neitherOr (_, _)norFalse
include Container.S1 with type 'a t := 'a t
val mem : 'a t -> 'a -> equal:('a -> 'a -> bool) -> boolChecks whether the provided element is there, using
equal.
val length : 'a t -> intval is_empty : 'a t -> boolval iter : 'a t -> f:('a -> unit) -> unitval fold : 'a t -> init:'accum -> f:('accum -> 'a -> 'accum) -> 'accumfold t ~init ~freturnsf (... f (f (f init e1) e2) e3 ...) en, wheree1..enare the elements oft
val fold_result : 'a t -> init:'accum -> f:('accum -> 'a -> ('accum, 'e) Base.Result.t) -> ('accum, 'e) Base.Result.tfold_result t ~init ~fis a short-circuiting version offoldthat runs in theResultmonad. Iffreturns anError _, that value is returned without any additional invocations off.
val fold_until : 'a t -> init:'accum -> f:('accum -> 'a -> ('accum, 'final) Base__.Container_intf.Continue_or_stop.t) -> finish:('accum -> 'final) -> 'finalfold_until t ~init ~f ~finishis a short-circuiting version offold. IffreturnsStop _the computation ceases and results in that value. IffreturnsContinue _, the fold will proceed. Iffnever returnsStop _, the final result is computed byfinish.Example:
type maybe_negative = | Found_negative of int | All_nonnegative of { sum : int } (** [first_neg_or_sum list] returns the first negative number in [list], if any, otherwise returns the sum of the list. *) let first_neg_or_sum = List.fold_until ~init:0 ~f:(fun sum x -> if x < 0 then Stop (Found_negative x) else Continue (sum + x)) ~finish:(fun sum -> All_nonnegative { sum }) ;; let x = first_neg_or_sum [1; 2; 3; 4; 5] val x : maybe_negative = All_nonnegative {sum = 15} let y = first_neg_or_sum [1; 2; -3; 4; 5] val y : maybe_negative = Found_negative -3
val exists : 'a t -> f:('a -> bool) -> boolReturns
trueif and only if there exists an element for which the provided function evaluates totrue. This is a short-circuiting operation.
val for_all : 'a t -> f:('a -> bool) -> boolReturns
trueif and only if the provided function evaluates totruefor all elements. This is a short-circuiting operation.
val count : 'a t -> f:('a -> bool) -> intReturns the number of elements for which the provided function evaluates to true.
val sum : (module Base__.Container_intf.Summable with type t = 'sum) -> 'a t -> f:('a -> 'sum) -> 'sumReturns the sum of
f ifor alliin the container.
val find : 'a t -> f:('a -> bool) -> 'a optionReturns as an
optionthe first element for whichfevaluates to true.
val find_map : 'a t -> f:('a -> 'b option) -> 'b optionReturns the first evaluation of
fthat returnsSome, and returnsNoneif there is no such element.
val to_list : 'a t -> 'a listval to_array : 'a t -> 'a arrayval min_elt : 'a t -> compare:('a -> 'a -> int) -> 'a optionReturns a minimum (resp maximum) element from the collection using the provided
comparefunction, orNoneif the collection is empty. In case of a tie, the first element encountered while traversing the collection is returned. The implementation usesfoldso it has the same complexity asfold.
val max_elt : 'a t -> compare:('a -> 'a -> int) -> 'a option
include Quickcheckable.S1 with type 'a t := 'a t
val quickcheck_generator : 'a Base_quickcheck.Generator.t -> 'a t Base_quickcheck.Generator.tval quickcheck_observer : 'a Base_quickcheck.Observer.t -> 'a t Base_quickcheck.Observer.tval quickcheck_shrinker : 'a Base_quickcheck.Shrinker.t -> 'a t Base_quickcheck.Shrinker.t
Blang.t sports a substitution monad:
return visBase v(think ofvas a variable)bind t freplaces everyBase vintwithf v(think ofvas a variable andfas specifying the term to substitute for each variable)
Note: bind t f does short-circuiting, so f may not be called on every variable in t.
include Core_kernel__.Std_internal.Monad with type 'a t := 'a t
include Base__.Monad_intf.S_without_syntax with type 'a t := 'a t
module Monad_infix : Base__.Monad_intf.Infix with type 'a t := 'a tval return : 'a -> 'a treturn vreturns the (trivial) computation that returns v.
val values : 'a t -> 'a Core_kernel__.Import.listvalues tforms the list containing everyvfor whichBase vis a subexpression oft
val eval : 'a t -> ('a -> Core_kernel__.Import.bool) -> Core_kernel__.Import.booleval t fevaluates the propositiontrelative to an environmentfthat assigns truth values to base propositions.
val eval_set : universe:('elt, 'comparator) Set.t Lazy.t -> ('a -> ('elt, 'comparator) Set.t) -> 'a t -> ('elt, 'comparator) Set.teval_set ~universe set_of_base expressionreturns the subset of elementseinuniversethat satisfyeval expression (fun base -> Set.mem (set_of_base base) e).eval_setassumes, but does not verify, thatset_of_basealways returns a subset ofuniverse. If this doesn't hold, theneval_set's result may contain elements not inuniverse.And set1 set2represents the elements that are both inset1andset2, thus in the intersection of the two sets. Symmetrically,Or set1 set2represents the union ofset1andset2.
val specialize : 'a t -> ('a -> [ `Known of Core_kernel__.Import.bool | `Unknown ]) -> 'a tspecialize t fpartially evaluatestaccording to a perhaps-incomplete assignmentfof the values of base propositions. The following laws (at least partially) characterize its behavior.specialize t (fun _ -> `Unknown) = t
specialize t (fun x -> `Known (f x)) = constant (eval t f)
List.for_all (values (specialize t g)) ~f:(fun x -> g x = `Unknown)
if List.for_all (values t) ~f:(fun x -> match g x with | `Known b -> b = f x | `Unknown -> true) then eval t f = eval (specialize t g) f
val invariant : 'a t -> Core_kernel__.Import.unit
module Stable : sig ... end