Module Interval.Time
module Time : sig ... endinclude Interval_intf.S with type bound = Time.t
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int -> t) Bin_prot.Read.readerThis function only needs implementation if
texposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the varianttafterwards.
val bin_shape_t : Bin_prot.Shape.tval bin_writer_t : t Bin_prot.Type_class.writerval bin_reader_t : t Bin_prot.Type_class.readerval bin_t : t Bin_prot.Type_class.t
include Ppx_sexp_conv_lib.Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.t
val compare : t -> t -> intval hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_value
type bound= Time.t
type 'a ttype 'a boundboundis the type of points in the interval (and therefore of the bounds).boundis instantiated in two different ways below: inmodule type Sas a monotype and inmodule type S1as'a.
val create : 'a bound -> 'a bound -> 'a tcreate l ureturns the interval with lower boundland upper boundu, unlessl > u, in which case it returns the empty interval.
val empty : 'a tval intersect : 'a t -> 'a t -> 'a tval is_empty : 'a t -> boolval is_empty_or_singleton : 'a t -> boolval bounds : 'a t -> ('a bound * 'a bound) optionval lbound : 'a t -> 'a bound optionval ubound : 'a t -> 'a bound optionval bounds_exn : 'a t -> 'a bound * 'a boundval lbound_exn : 'a t -> 'a boundval ubound_exn : 'a t -> 'a boundval convex_hull : 'a t list -> 'a tconvex_hull tsreturns an interval whose upper bound is the greatest upper bound of the intervals in the list, and whose lower bound is the least lower bound of the list.Suppose you had three intervals
a,b, andc:a: ( ) b: ( ) c: ( ) hull: ( )In this case the hull goes from
lbound_exn atoubound_exn c.
val contains : 'a t -> 'a bound -> boolval compare_value : 'a t -> 'a bound -> [ `Below | `Within | `Above | `Interval_is_empty ]val bound : 'a t -> 'a bound -> 'a bound optionbound t xreturnsNoneiffis_empty t. Ifbounds t = Some (a, b), thenboundreturnsSome ywhereyis the element oftclosest tox. I.e.:y = a if x < a y = x if a <= x <= b y = b if x > b
val is_superset : 'a t -> of_:'a t -> boolis_superset i1 of_:i2is whether i1 contains i2. The empty interval is contained in every interval.
val is_subset : 'a t -> of_:'a t -> boolval map : 'a t -> f:('a bound -> 'b bound) -> 'b tmap t ~freturnscreate (f l) (f u)ifbounds t = Some (l, u), andemptyiftis empty. Note that iff l > f u, the result ofmapisempty, by the definition ofcreate.If you think of an interval as a set of points, rather than a pair of its bounds, then
mapis not the same as the usual mathematical notion of mappingfover that set. For example,map ~f:(fun x -> x * x)maps the interval[-1,1]to[1,1], not to[0,1].
val are_disjoint : 'a t list -> boolare_disjoint tsreturnstrueiff the intervals intsare pairwise disjoint.
val are_disjoint_as_open_intervals : 'a t list -> boolReturns true iff a given set of intervals would be disjoint if considered as open intervals, e.g.,
(3,4)and(4,5)would count as disjoint according to this function.
val list_intersect : 'a t list -> 'a t list -> 'a t listAssuming that
ilist1andilist2are lists of disjoint intervals,list_intersect ilist1 ilist2considers the intersection(intersect i1 i2)of every pair of intervals(i1, i2), withi1drawn fromilist1andi2fromilist2, returning just the non-empty intersections. By construction these intervals will be disjoint, too. For example:let i = Interval.create;; list_intersect [i 4 7; i 9 15] [i 2 4; i 5 10; i 14 20];; [(4, 4), (5, 7), (9, 10), (14, 15)]Raises an exception if either input list is non-disjoint.
val half_open_intervals_are_a_partition : 'a t list -> boolReturns true if the intervals, when considered as half-open intervals, nestle up cleanly one to the next. I.e., if you sort the intervals by the lower bound, then the upper bound of the
nth interval is equal to the lower bound of then+1th interval. The intervals do not need to partition the entire space, they just need to partition their union.
val create_ending_after : ?zone:Interval_intf.Zone.t -> (Time.Ofday.t * Time.Ofday.t) -> now:Time.t -> tcreate_ending_after ?zone (od1, od2) ~nowreturns the smallest interval(t1 t2)with minimumt2such thatt2 >= now,to_ofday t1 = od1, andto_ofday t2 = od2. If a zone is specified, it is used to translateod1andod2into times, otherwise the machine's time zone is used.It is not guaranteed that the interval will contain
now: for instance if it's 11:15am,od1is 12pm, andod2is 2pm, the returned interval will be 12pm-2pm today, which obviously doesn't include 11:15am. In generalcontains (t1 t2) nowwill only be true when now is betweento_ofday od1andto_ofday od2.You might want to use this function if, for example, there's a daily meeting from 10:30am-11:30am and you want to find the next instance of the meeting, relative to now.
val create_ending_before : ?zone:Interval_intf.Zone.t -> (Time.Ofday.t * Time.Ofday.t) -> ubound:Time.t -> tcreate_ending_before ?zone (od1, od2) ~uboundreturns the smallest interval(t1 t2)with maximumt2such thatt2 <= ubound,to_ofday t1 = od1, andto_ofday t2 = od2. If a zone is specified, it is used to translateod1andod2into times, otherwise the machine's time zone is used.You might want to use this function if, for example, there's a lunch hour from noon to 1pm and you want to find the first instance of that lunch hour (an interval) before
ubound. The result will either be on the same day asubound, ifto_ofday uboundis after 1pm, or the day before, ifto_ofday uboundis any earlier.