Module Interval.Float
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int -> t) Bin_prot.Read.readerThis function only needs implementation if
texposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the varianttafterwards.
val bin_shape_t : Bin_prot.Shape.tval bin_writer_t : t Bin_prot.Type_class.writerval bin_reader_t : t Bin_prot.Type_class.readerval bin_t : t Bin_prot.Type_class.t
include Ppx_sexp_conv_lib.Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> tval sexp_of_t : t -> Sexplib0.Sexp.t
val compare : t -> t -> intval hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_value
type bound= Core__.Import.Float.t
type 'a ttype 'a boundboundis the type of points in the interval (and therefore of the bounds).boundis instantiated in two different ways below: inmodule type Sas a monotype and inmodule type S1as'a.
val create : 'a bound -> 'a bound -> 'a tcreate l ureturns the interval with lower boundland upper boundu, unlessl > u, in which case it returns the empty interval.
val empty : 'a tval intersect : 'a t -> 'a t -> 'a tval is_empty : 'a t -> boolval is_empty_or_singleton : 'a t -> boolval bounds : 'a t -> ('a bound * 'a bound) optionval lbound : 'a t -> 'a bound optionval ubound : 'a t -> 'a bound optionval bounds_exn : 'a t -> 'a bound * 'a boundval lbound_exn : 'a t -> 'a boundval ubound_exn : 'a t -> 'a boundval convex_hull : 'a t list -> 'a tconvex_hull tsreturns an interval whose upper bound is the greatest upper bound of the intervals in the list, and whose lower bound is the least lower bound of the list.Suppose you had three intervals
a,b, andc:a: ( ) b: ( ) c: ( ) hull: ( )In this case the hull goes from
lbound_exn atoubound_exn c.
val contains : 'a t -> 'a bound -> boolval compare_value : 'a t -> 'a bound -> [ `Below | `Within | `Above | `Interval_is_empty ]val bound : 'a t -> 'a bound -> 'a bound optionbound t xreturnsNoneiffis_empty t. Ifbounds t = Some (a, b), thenboundreturnsSome ywhereyis the element oftclosest tox. I.e.:y = a if x < a y = x if a <= x <= b y = b if x > b
val is_superset : 'a t -> of_:'a t -> boolis_superset i1 of_:i2is whether i1 contains i2. The empty interval is contained in every interval.
val is_subset : 'a t -> of_:'a t -> boolval map : 'a t -> f:('a bound -> 'b bound) -> 'b tmap t ~freturnscreate (f l) (f u)ifbounds t = Some (l, u), andemptyiftis empty. Note that iff l > f u, the result ofmapisempty, by the definition ofcreate.If you think of an interval as a set of points, rather than a pair of its bounds, then
mapis not the same as the usual mathematical notion of mappingfover that set. For example,map ~f:(fun x -> x * x)maps the interval[-1,1]to[1,1], not to[0,1].
val are_disjoint : 'a t list -> boolare_disjoint tsreturnstrueiff the intervals intsare pairwise disjoint.
val are_disjoint_as_open_intervals : 'a t list -> boolReturns true iff a given set of intervals would be disjoint if considered as open intervals, e.g.,
(3,4)and(4,5)would count as disjoint according to this function.
val list_intersect : 'a t list -> 'a t list -> 'a t listAssuming that
ilist1andilist2are lists of disjoint intervals,list_intersect ilist1 ilist2considers the intersection(intersect i1 i2)of every pair of intervals(i1, i2), withi1drawn fromilist1andi2fromilist2, returning just the non-empty intersections. By construction these intervals will be disjoint, too. For example:let i = Interval.create;; list_intersect [i 4 7; i 9 15] [i 2 4; i 5 10; i 14 20];; [(4, 4), (5, 7), (9, 10), (14, 15)]Raises an exception if either input list is non-disjoint.
val half_open_intervals_are_a_partition : 'a t list -> boolReturns true if the intervals, when considered as half-open intervals, nestle up cleanly one to the next. I.e., if you sort the intervals by the lower bound, then the upper bound of the
nth interval is equal to the lower bound of then+1th interval. The intervals do not need to partition the entire space, they just need to partition their union.