Module Unix_extended

val fork_exec : ?⁠stdin:Core.Unix.File_descr.t -> ?⁠stdout:Core.Unix.File_descr.t -> ?⁠stderr:Core.Unix.File_descr.t -> ?⁠path_lookup:bool -> ?⁠env:[ `Extend of (string * string) list | `Replace of (string * string) list ] -> ?⁠working_dir:string -> ?⁠setuid:int -> ?⁠setgid:int -> string -> string list -> Core.Pid.t

fork_exec prog args ~stdin ~stdout ~stderr ~setuid ~setgid forks a new process that executes the program in file prog, with arguments args. The pid of the new process is returned immediately; the new process executes concurrently with the current process.

The function raises EPERM if when using set{gid,uid} and the user id is not 0.

The standard input and outputs of the new process are connected to the descriptors stdin, stdout and stderr.

The close_on_exec flag is cleared from stderr stdout and stdin so it's safe to pass in fds with close_on_exec set.

parameter path_lookup

if true than we use PATH to find the process to exec. @env specifies the environment the process runs in

ERRORS: Unix.unix_error. This function should not raise EINTR; it will restart itself automatically.

RATIONAL: setuid and setgid do not do a full id drop (e.g.: they save the id in saved id) when the user does not have the privileges required to setuid to anyone.

By default all file descriptors should be set_closexec ASAP after being open to avoid being captured in parallel execution of fork_exec; resetting the closexec flag on the forked flag is a cleaner and more thread safe approach.

BUGS: The capabilities for setuid in linux are not tied to the uid 0 (man 7 capabilities). It is still fair to assume that under most system this capability is there IFF uid == 0. A more fine grain permissionning approach would make this function non-portable and be hard to implement in an async-signal-way.

Because this function keeps the lock for most of its lifespan and restarts automatically on EINTR it might prevent the OCaml signal handlers to run in that thread.

val seteuid : int -> unit
val setreuid : uid:int -> euid:int -> unit
val ntohl : Core.Int32.t -> Core.Int32.t

Network to host order long, like C.

val htonl : Core.Int32.t -> Core.Int32.t

Host to network order long, like C.

type statvfs = {
bsize : int;

file system block size

frsize : int;

fragment size

blocks : int;

size of fs in frsize units

bfree : int;

# free blocks

bavail : int;

# free blocks for non-root

files : int;

# inodes

ffree : int;

# free inodes

favail : int;

# free inodes for non-root

fsid : int;

file system ID

flag : int;

mount flags

namemax : int;

maximum filename length

}
val sexp_of_statvfs : statvfs -> Ppx_sexp_conv_lib.Sexp.t
val statvfs_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> statvfs
val bin_shape_statvfs : Bin_prot.Shape.t
val bin_size_statvfs : statvfs Bin_prot.Size.sizer
val bin_write_statvfs : statvfs Bin_prot.Write.writer
val bin_writer_statvfs : statvfs Bin_prot.Type_class.writer
val bin_read_statvfs : statvfs Bin_prot.Read.reader
val __bin_read_statvfs__ : (int -> statvfs) Bin_prot.Read.reader
val bin_reader_statvfs : statvfs Bin_prot.Type_class.reader
val bin_statvfs : statvfs Bin_prot.Type_class.t
val statvfs : string -> statvfs

get file system statistics

val getloadavg : unit -> float * float * float

get load averages

module Extended_passwd : sig ... end
val strptime : fmt:string -> string -> Core.Unix.tm
module Inet_port : sig ... end

Simple int wrapper to be explicit about ports.

module Mac_address : sig ... end
module Quota : sig ... end
module Mount_entry : sig ... end
val terminal_width : int Core.Lazy.t