Module Interval.Float
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (int -> t) Bin_prot.Read.reader
This function only needs implementation if
t
exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variantt
afterwards.
val bin_shape_t : Bin_prot.Shape.t
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_t : t Bin_prot.Type_class.t
include Ppx_sexp_conv_lib.Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> t
val sexp_of_t : t -> Sexplib0.Sexp.t
val compare : t -> t -> int
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.state
val hash : t -> Base.Hash.hash_value
type bound
= Core__.Import.Float.t
type 'a t
type 'a bound
bound
is the type of points in the interval (and therefore of the bounds).bound
is instantiated in two different ways below: inmodule type S
as a monotype and inmodule type S1
as'a
.
val create : 'a bound -> 'a bound -> 'a t
create l u
returns the interval with lower boundl
and upper boundu
, unlessl > u
, in which case it returns the empty interval.
val empty : 'a t
val intersect : 'a t -> 'a t -> 'a t
val is_empty : 'a t -> bool
val is_empty_or_singleton : 'a t -> bool
val bounds : 'a t -> ('a bound * 'a bound) option
val lbound : 'a t -> 'a bound option
val ubound : 'a t -> 'a bound option
val bounds_exn : 'a t -> 'a bound * 'a bound
val lbound_exn : 'a t -> 'a bound
val ubound_exn : 'a t -> 'a bound
val convex_hull : 'a t list -> 'a t
convex_hull ts
returns an interval whose upper bound is the greatest upper bound of the intervals in the list, and whose lower bound is the least lower bound of the list.Suppose you had three intervals
a
,b
, andc
:a: ( ) b: ( ) c: ( ) hull: ( )
In this case the hull goes from
lbound_exn a
toubound_exn c
.
val contains : 'a t -> 'a bound -> bool
val compare_value : 'a t -> 'a bound -> [ `Below | `Within | `Above | `Interval_is_empty ]
val bound : 'a t -> 'a bound -> 'a bound option
bound t x
returnsNone
iffis_empty t
. Ifbounds t = Some (a, b)
, thenbound
returnsSome y
wherey
is the element oft
closest tox
. I.e.:y = a if x < a y = x if a <= x <= b y = b if x > b
val is_superset : 'a t -> of_:'a t -> bool
is_superset i1 of_:i2
is whether i1 contains i2. The empty interval is contained in every interval.
val is_subset : 'a t -> of_:'a t -> bool
val map : 'a t -> f:('a bound -> 'b bound) -> 'b t
map t ~f
returnscreate (f l) (f u)
ifbounds t = Some (l, u)
, andempty
ift
is empty. Note that iff l > f u
, the result ofmap
isempty
, by the definition ofcreate
.If you think of an interval as a set of points, rather than a pair of its bounds, then
map
is not the same as the usual mathematical notion of mappingf
over that set. For example,map ~f:(fun x -> x * x)
maps the interval[-1,1]
to[1,1]
, not to[0,1]
.
val are_disjoint : 'a t list -> bool
are_disjoint ts
returnstrue
iff the intervals ints
are pairwise disjoint.
val are_disjoint_as_open_intervals : 'a t list -> bool
Returns true iff a given set of intervals would be disjoint if considered as open intervals, e.g.,
(3,4)
and(4,5)
would count as disjoint according to this function.
val list_intersect : 'a t list -> 'a t list -> 'a t list
Assuming that
ilist1
andilist2
are lists of disjoint intervals,list_intersect ilist1 ilist2
considers the intersection(intersect i1 i2)
of every pair of intervals(i1, i2)
, withi1
drawn fromilist1
andi2
fromilist2
, returning just the non-empty intersections. By construction these intervals will be disjoint, too. For example:let i = Interval.create;; list_intersect [i 4 7; i 9 15] [i 2 4; i 5 10; i 14 20];; [(4, 4), (5, 7), (9, 10), (14, 15)]
Raises an exception if either input list is non-disjoint.
val half_open_intervals_are_a_partition : 'a t list -> bool
Returns true if the intervals, when considered as half-open intervals, nestle up cleanly one to the next. I.e., if you sort the intervals by the lower bound, then the upper bound of the
n
th interval is equal to the lower bound of then+1
th interval. The intervals do not need to partition the entire space, they just need to partition their union.