Module Base__.Map
module Or_duplicate = Base__.Map_intf.Or_duplicate
module Continue_or_stop = Base__.Map_intf.Continue_or_stop
module Finished_or_unfinished : sig ... end
type ('k, 'cmp) comparator
= (module Base.Comparator.S with type comparator_witness = 'cmp and type t = 'k)
val invariants : (_, _, _) t -> bool
Test if the invariants of the internal AVL search tree hold.
val comparator_s : ('a, _, 'cmp) t -> ('a, 'cmp) comparator
Returns a first-class module that can be used to build other map/set/etc. with the same notion of comparison.
val comparator : ('a, _, 'cmp) t -> ('a, 'cmp) Base.Comparator.t
val empty : ('a, 'cmp) comparator -> ('a, 'b, 'cmp) t
The empty map.
val singleton : ('a, 'cmp) comparator -> 'a -> 'b -> ('a, 'b, 'cmp) t
A map with one (key, data) pair.
val of_alist : ('a, 'cmp) comparator -> ('a * 'b) list -> [ `Ok of ('a, 'b, 'cmp) t | `Duplicate_key of 'a ]
Creates a map from an association list with unique keys.
val of_alist_or_error : ('a, 'cmp) comparator -> ('a * 'b) list -> ('a, 'b, 'cmp) t Base.Or_error.t
Creates a map from an association list with unique keys, returning an error if duplicate
'a
keys are found.
val of_alist_exn : ('a, 'cmp) comparator -> ('a * 'b) list -> ('a, 'b, 'cmp) t
Creates a map from an association list with unique keys, raising an exception if duplicate
'a
keys are found.
val of_alist_multi : ('a, 'cmp) comparator -> ('a * 'b) list -> ('a, 'b list, 'cmp) t
Creates a map from an association list with possibly repeated keys. The values in the map for a given key appear in the same order as they did in the association list.
val of_alist_fold : ('a, 'cmp) comparator -> ('a * 'b) list -> init:'c -> f:('c -> 'b -> 'c) -> ('a, 'c, 'cmp) t
Combines an association list into a map, folding together bound values with common keys.
val of_alist_reduce : ('a, 'cmp) comparator -> ('a * 'b) list -> f:('b -> 'b -> 'b) -> ('a, 'b, 'cmp) t
Combines an association list into a map, reducing together bound values with common keys.
val of_iteri : ('a, 'cmp) comparator -> iteri:(f:(key:'a -> data:'b -> unit) -> unit) -> [ `Ok of ('a, 'b, 'cmp) t | `Duplicate_key of 'a ]
of_iteri ~iteri
behaves likeof_alist
, except that instead of taking a concrete data structure, it takes an iteration function. For instance, to convert a string table into a map:of_iteri (module String) ~f:(Hashtbl.iteri table)
. It is faster than adding the elements one by one.
val of_sorted_array : ('a, 'cmp) comparator -> ('a * 'b) array -> ('a, 'b, 'cmp) t Base.Or_error.t
Creates a map from a sorted array of key-data pairs. The input array must be sorted (either in ascending or descending order), as given by the relevant comparator, and must not contain duplicate keys. If either of these conditions does not hold, an error is returned.
val of_sorted_array_unchecked : ('a, 'cmp) comparator -> ('a * 'b) array -> ('a, 'b, 'cmp) t
Like
of_sorted_array
except that it returns a map with broken invariants when anError
would have been returned.
val of_increasing_iterator_unchecked : ('a, 'cmp) comparator -> len:int -> f:(int -> 'a * 'b) -> ('a, 'b, 'cmp) t
of_increasing_iterator_unchecked c ~len ~f
behaves likeof_sorted_array_unchecked c (Array.init len ~f)
, with the additional restriction that a decreasing order is not supported. The advantage is not requiring you to allocate an intermediate array.f
will be called with 0, 1, ...len - 1
, in order.
val of_increasing_sequence : ('k, 'cmp) comparator -> ('k * 'v) Base.Sequence.t -> ('k, 'v, 'cmp) t Base.Or_error.t
of_increasing_sequence c seq
behaves likeof_sorted_array c (Sequence.to_array seq)
, but does not allocate the intermediate array.The sequence will be folded over once, and the additional time complexity is O(n).
val of_sequence : ('k, 'cmp) comparator -> ('k * 'v) Base.Sequence.t -> [ `Ok of ('k, 'v, 'cmp) t | `Duplicate_key of 'k ]
Creates a map from an association sequence with unique keys.
of_sequence c seq
behaves likeof_alist c (Sequence.to_list seq)
but does not allocate the intermediate list.If your sequence is increasing, use
of_increasing_sequence
.
val of_sequence_or_error : ('a, 'cmp) comparator -> ('a * 'b) Base.Sequence.t -> ('a, 'b, 'cmp) t Base.Or_error.t
Creates a map from an association sequence with unique keys, returning an error if duplicate
'a
keys are found.of_sequence_or_error c seq
behaves likeof_alist_or_error c (Sequence.to_list seq)
but does not allocate the intermediate list.
val of_sequence_exn : ('a, 'cmp) comparator -> ('a * 'b) Base.Sequence.t -> ('a, 'b, 'cmp) t
Creates a map from an association sequence with unique keys, raising an exception if duplicate
'a
keys are found.of_sequence_exn c seq
behaves likeof_alist_exn c (Sequence.to_list seq)
but does not allocate the intermediate list.
val of_sequence_multi : ('a, 'cmp) comparator -> ('a * 'b) Base.Sequence.t -> ('a, 'b list, 'cmp) t
Creates a map from an association sequence with possibly repeated keys. The values in the map for a given key appear in the same order as they did in the association list.
of_sequence_multi c seq
behaves likeof_alist_exn c (Sequence.to_list seq)
but does not allocate the intermediate list.
val of_sequence_fold : ('a, 'cmp) comparator -> ('a * 'b) Base.Sequence.t -> init:'c -> f:('c -> 'b -> 'c) -> ('a, 'c, 'cmp) t
Combines an association sequence into a map, folding together bound values with common keys.
of_sequence_fold c seq ~init ~f
behaves likeof_alist_fold c (Sequence.to_list seq) ~init ~f
but does not allocate the intermediate list.
val of_sequence_reduce : ('a, 'cmp) comparator -> ('a * 'b) Base.Sequence.t -> f:('b -> 'b -> 'b) -> ('a, 'b, 'cmp) t
Combines an association sequence into a map, reducing together bound values with common keys.
of_sequence_reduce c seq ~f
behaves likeof_alist_reduce c (Sequence.to_list seq) ~f
but does not allocate the intermediate list.
val is_empty : (_, _, _) t -> bool
Tests whether a map is empty.
val length : (_, _, _) t -> int
length map
returns the number of elements inmap
. O(1), butTree.length
is O(n).
val set : ('k, 'v, 'cmp) t -> key:'k -> data:'v -> ('k, 'v, 'cmp) t
Returns a new map with the specified new binding; if the key was already bound, its previous binding disappears.
val add : ('k, 'v, 'cmp) t -> key:'k -> data:'v -> ('k, 'v, 'cmp) t Or_duplicate.t
add t ~key ~data
adds a new entry tot
mappingkey
todata
and returns`Ok
with the new map, or ifkey
is already present int
, returns`Duplicate
.
val add_exn : ('k, 'v, 'cmp) t -> key:'k -> data:'v -> ('k, 'v, 'cmp) t
val add_multi : ('k, 'v list, 'cmp) t -> key:'k -> data:'v -> ('k, 'v list, 'cmp) t
If
key
is not present then add a singleton list, otherwise, cons data onto the head of the existing list.
val remove_multi : ('k, 'v list, 'cmp) t -> 'k -> ('k, 'v list, 'cmp) t
If the key is present, then remove its head element; if the result is empty, remove the key.
val find_multi : ('k, 'v list, 'cmp) t -> 'k -> 'v list
Returns the value bound to the given key, or the empty list if there is none.
val change : ('k, 'v, 'cmp) t -> 'k -> f:('v option -> 'v option) -> ('k, 'v, 'cmp) t
change t key ~f
returns a new mapm
that is the same ast
on all keys except forkey
, and whose value forkey
is defined byf
, i.e.,find m key = f (find t key)
.
val update : ('k, 'v, 'cmp) t -> 'k -> f:('v option -> 'v) -> ('k, 'v, 'cmp) t
update t key ~f
ischange t key ~f:(fun o -> Some (f o))
.
val find : ('k, 'v, 'cmp) t -> 'k -> 'v option
Returns
Some value
bound to the given key, orNone
if none exists.
val find_exn : ('k, 'v, 'cmp) t -> 'k -> 'v
Returns the value bound to the given key, raising
Caml.Not_found
orNot_found_s
if none exists.
val remove : ('k, 'v, 'cmp) t -> 'k -> ('k, 'v, 'cmp) t
Returns a new map with any binding for the key in question removed.
val mem : ('k, _, 'cmp) t -> 'k -> bool
mem map key
tests whethermap
contains a binding forkey
.
val iter_keys : ('k, _, _) t -> f:('k -> unit) -> unit
val iter : (_, 'v, _) t -> f:('v -> unit) -> unit
val iteri : ('k, 'v, _) t -> f:(key:'k -> data:'v -> unit) -> unit
val iteri_until : ('k, 'v, _) t -> f:(key:'k -> data:'v -> Continue_or_stop.t) -> Finished_or_unfinished.t
Iterates until the first time
f
returnsStop
. Iff
returnsStop
, the final result isUnfinished
. Otherwise, the final result isFinished
.
val iter2 : ('k, 'v1, 'cmp) t -> ('k, 'v2, 'cmp) t -> f:(key:'k -> data:[ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] -> unit) -> unit
Iterates two maps side by side. The complexity of this function is O(M + N). If two inputs are
[(0, a); (1, a)]
and[(1, b); (2, b)]
,f
will be called with[(0, `Left a); (1, `Both (a, b)); (2, `Right b)]
.
val map : ('k, 'v1, 'cmp) t -> f:('v1 -> 'v2) -> ('k, 'v2, 'cmp) t
Returns a new map with bound values replaced by
f
applied to the bound values.
val mapi : ('k, 'v1, 'cmp) t -> f:(key:'k -> data:'v1 -> 'v2) -> ('k, 'v2, 'cmp) t
Like
map
, but the passed function takes bothkey
anddata
as arguments.
val fold : ('k, 'v, _) t -> init:'a -> f:(key:'k -> data:'v -> 'a -> 'a) -> 'a
Folds over keys and data in the map in increasing order of
key
.
val fold_right : ('k, 'v, _) t -> init:'a -> f:(key:'k -> data:'v -> 'a -> 'a) -> 'a
Folds over keys and data in the map in decreasing order of
key
.
val fold2 : ('k, 'v1, 'cmp) t -> ('k, 'v2, 'cmp) t -> init:'a -> f:(key:'k -> data:[ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] -> 'a -> 'a) -> 'a
Folds over two maps side by side, like
iter2
.
val filter_keys : ('k, 'v, 'cmp) t -> f:('k -> bool) -> ('k, 'v, 'cmp) t
filter
,filteri
,filter_keys
,filter_map
, andfilter_mapi
run in O(n * lg n) time; they simply accumulate each key & data pair retained byf
into a new map usingadd
.
val filter : ('k, 'v, 'cmp) t -> f:('v -> bool) -> ('k, 'v, 'cmp) t
val filteri : ('k, 'v, 'cmp) t -> f:(key:'k -> data:'v -> bool) -> ('k, 'v, 'cmp) t
val filter_map : ('k, 'v1, 'cmp) t -> f:('v1 -> 'v2 option) -> ('k, 'v2, 'cmp) t
Returns a new map with bound values filtered by
f
applied to the bound values.
val filter_mapi : ('k, 'v1, 'cmp) t -> f:(key:'k -> data:'v1 -> 'v2 option) -> ('k, 'v2, 'cmp) t
Like
filter_map
, but the passed function takes bothkey
anddata
as arguments.
val partition_mapi : ('k, 'v1, 'cmp) t -> f:(key:'k -> data:'v1 -> ('v2, 'v3) Base.Either.t) -> ('k, 'v2, 'cmp) t * ('k, 'v3, 'cmp) t
partition_mapi t ~f
returns two newt
s, with each key int
appearing in exactly one of the resulting maps depending on its mapping inf
.
val partition_map : ('k, 'v1, 'cmp) t -> f:('v1 -> ('v2, 'v3) Base.Either.t) -> ('k, 'v2, 'cmp) t * ('k, 'v3, 'cmp) t
partition_map t ~f = partition_mapi t ~f:(fun ~key:_ ~data -> f data)
val partitioni_tf : ('k, 'v, 'cmp) t -> f:(key:'k -> data:'v -> bool) -> ('k, 'v, 'cmp) t * ('k, 'v, 'cmp) t
partitioni_tf t ~f = partition_mapi t ~f:(fun ~key ~data -> if f ~key ~data then First data else Second data)
val partition_tf : ('k, 'v, 'cmp) t -> f:('v -> bool) -> ('k, 'v, 'cmp) t * ('k, 'v, 'cmp) t
partition_tf t ~f = partitioni_tf t ~f:(fun ~key:_ ~data -> f data)
val combine_errors : ('k, 'v Base.Or_error.t, 'cmp) t -> ('k, 'v, 'cmp) t Base.Or_error.t
Produces
Ok
of a map including all keys if all data isOk
, or anError
including all errors otherwise.
val compare_direct : ('v -> 'v -> int) -> ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> int
Returns a total ordering between maps. The first argument is a total ordering used to compare data associated with equal keys in the two maps.
val hash_fold_direct : 'k Base.Hash.folder -> 'v Base.Hash.folder -> ('k, 'v, 'cmp) t Base.Hash.folder
Hash function: a building block to use when hashing data structures containing maps in them.
hash_fold_direct hash_fold_key
is compatible withcompare_direct
iffhash_fold_key
is compatible with(comparator m).compare
of the mapm
being hashed.
val equal : ('v -> 'v -> bool) -> ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> bool
equal cmp m1 m2
tests whether the mapsm1
andm2
are equal, that is, contain the same keys and associate each key with the same value.cmp
is the equality predicate used to compare the values associated with the keys.
val keys : ('k, _, _) t -> 'k list
Returns a list of the keys in the given map.
val data : (_, 'v, _) t -> 'v list
Returns a list of the data in the given map.
val to_alist : ?key_order:[ `Increasing | `Decreasing ] -> ('k, 'v, _) t -> ('k * 'v) list
Creates an association list from the given map.
val validate : name:('k -> string) -> 'v Base.Validate.check -> ('k, 'v, _) t Base.Validate.check
val validatei : name:('k -> string) -> ('k * 'v) Base.Validate.check -> ('k, 'v, _) t Base.Validate.check
Additional operations on maps
val merge : ('k, 'v1, 'cmp) t -> ('k, 'v2, 'cmp) t -> f:(key:'k -> [ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] -> 'v3 option) -> ('k, 'v3, 'cmp) t
Merges two maps. The runtime is O(length(t1) + length(t2)). You shouldn't use this function to merge a list of maps; consider using
merge_skewed
instead.
val merge_skewed : ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> combine:(key:'k -> 'v -> 'v -> 'v) -> ('k, 'v, 'cmp) t
A special case of
merge
,merge_skewed t1 t2
is a map containing all the bindings oft1
andt2
. Bindings that appear in botht1
andt2
are combined into a single value using thecombine
function. In a callcombine ~key v1 v2
, the valuev1
comes fromt1
andv2
fromt2
.The runtime of
merge_skewed
isO(l1 * log(l2))
, wherel1
is the length of the smaller map andl2
the length of the larger map. This is likely to be faster thanmerge
when one of the maps is a lot smaller, or when you merge a list of maps.
module Symmetric_diff_element : sig ... end
val symmetric_diff : ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> data_equal:('v -> 'v -> bool) -> ('k, 'v) Symmetric_diff_element.t Base.Sequence.t
symmetric_diff t1 t2 ~data_equal
returns a list of changes betweent1
andt2
. It is intended to be efficient in the case wheret1
andt2
share a large amount of structure. The keys in the output sequence will be in sorted order.It is assumed that
data_equal
is at least as equating as physical equality: thatphys_equal x y
impliesdata_equal x y
. Otherwise,symmetric_diff
may behave in unexpected ways. For example, with~data_equal:(fun _ _ -> false)
it is NOT necessarily the case the resulting change sequence will contain an element(k, `Unequal _)
for every keyk
shared by both maps.Warning: Float equality violates this property!
phys_equal Float.nan Float.nan
is true, butFloat.(=) Float.nan Float.nan
is false.
val fold_symmetric_diff : ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> data_equal:('v -> 'v -> bool) -> init:'a -> f:('a -> ('k, 'v) Symmetric_diff_element.t -> 'a) -> 'a
fold_symmetric_diff t1 t2 ~data_equal
folds across an implicit sequence of changes betweent1
andt2
, in sorted order by keys. Equivalent toSequence.fold (symmetric_diff t1 t2 ~data_equal)
, and more efficient.
val min_elt : ('k, 'v, _) t -> ('k * 'v) option
min_elt map
returnsSome (key, data)
pair corresponding to the minimum key inmap
, orNone
if empty.
val min_elt_exn : ('k, 'v, _) t -> 'k * 'v
val max_elt : ('k, 'v, _) t -> ('k * 'v) option
max_elt map
returnsSome (key, data)
pair corresponding to the maximum key inmap
, orNone
ifmap
is empty.
val max_elt_exn : ('k, 'v, _) t -> 'k * 'v
val for_all : ('k, 'v, _) t -> f:('v -> bool) -> bool
val for_alli : ('k, 'v, _) t -> f:(key:'k -> data:'v -> bool) -> bool
val exists : ('k, 'v, _) t -> f:('v -> bool) -> bool
val existsi : ('k, 'v, _) t -> f:(key:'k -> data:'v -> bool) -> bool
val count : ('k, 'v, _) t -> f:('v -> bool) -> int
val counti : ('k, 'v, _) t -> f:(key:'k -> data:'v -> bool) -> int
val split : ('k, 'v, 'cmp) t -> 'k -> ('k, 'v, 'cmp) t * ('k * 'v) option * ('k, 'v, 'cmp) t
split t key
returns a map of keys strictly less thankey
, the mapping ofkey
if any, and a map of keys strictly greater thankey
.Runtime is O(m + log n), where n is the size of the input map and m is the size of the smaller of the two output maps. The O(m) term is due to the need to calculate the length of the output maps.
val append : lower_part:('k, 'v, 'cmp) t -> upper_part:('k, 'v, 'cmp) t -> [ `Ok of ('k, 'v, 'cmp) t | `Overlapping_key_ranges ]
append ~lower_part ~upper_part
returns`Ok map
wheremap
contains all the(key, value)
pairs from the two input maps if all the keys fromlower_part
are less than all the keys fromupper_part
. Otherwise it returns`Overlapping_key_ranges
.Runtime is O(log n) where n is the size of the larger input map. This can be significantly faster than
Map.merge
or repeatedMap.add
.assert (match Map.append ~lower_part ~upper_part with | `Ok whole_map -> Map.to_alist whole_map = List.append (to_alist lower_part) (to_alist upper_part) | `Overlapping_key_ranges -> true);
val subrange : ('k, 'v, 'cmp) t -> lower_bound:'k Base.Maybe_bound.t -> upper_bound:'k Base.Maybe_bound.t -> ('k, 'v, 'cmp) t
subrange t ~lower_bound ~upper_bound
returns a map containing all the entries fromt
whose keys lie inside the interval indicated by~lower_bound
and~upper_bound
. If this interval is empty, an empty map is returned.Runtime is O(m + log n), where n is the size of the input map and m is the size of the output map. The O(m) term is due to the need to calculate the length of the output map.
val fold_range_inclusive : ('k, 'v, 'cmp) t -> min:'k -> max:'k -> init:'a -> f:(key:'k -> data:'v -> 'a -> 'a) -> 'a
fold_range_inclusive t ~min ~max ~init ~f
foldsf
(with initial value~init
) over all keys (and their associated values) that are in the range[min, max]
(inclusive).
val range_to_alist : ('k, 'v, 'cmp) t -> min:'k -> max:'k -> ('k * 'v) list
range_to_alist t ~min ~max
returns an associative list of the elements whose keys lie in[min, max]
(inclusive), with the smallest key being at the head of the list.
val closest_key : ('k, 'v, 'cmp) t -> [ `Greater_or_equal_to | `Greater_than | `Less_or_equal_to | `Less_than ] -> 'k -> ('k * 'v) option
closest_key t dir k
returns the(key, value)
pair int
withkey
closest tok
that satisfies the given inequality bound.For example,
closest_key t `Less_than k
would be the pair with the closest key tok
wherekey < k
.to_sequence
can be used to get the same results asclosest_key
. It is less efficient for individual lookups but more efficient for finding many elements starting at some value.
val nth : ('k, 'v, _) t -> int -> ('k * 'v) option
nth t n
finds the (key, value) pair of rank n (i.e., such that there are exactly n keys strictly less than the found key), if one exists. O(log(length t) + n) time.
val nth_exn : ('k, 'v, _) t -> int -> 'k * 'v
val rank : ('k, 'v, 'cmp) t -> 'k -> int option
rank t k
Ifk
is int
, returns the number of keys strictly less thank
int
, andNone
otherwise.
val to_sequence : ?order:[ `Increasing_key | `Decreasing_key ] -> ?keys_greater_or_equal_to:'k -> ?keys_less_or_equal_to:'k -> ('k, 'v, 'cmp) t -> ('k * 'v) Base.Sequence.t
to_sequence ?order ?keys_greater_or_equal_to ?keys_less_or_equal_to t
gives a sequence of key-value pairs betweenkeys_less_or_equal_to
andkeys_greater_or_equal_to
inclusive, presented inorder
. Ifkeys_greater_or_equal_to > keys_less_or_equal_to
, the sequence is empty.When neither
keys_greater_or_equal_to
norkeys_less_or_equal_to
are provided, the cost is O(log n) up front and amortized O(1) to produce each element. If either is provided (and is used by the order parameter provided), then the the cost is O(n) up front, and amortized O(1) to produce each element.
val binary_search : ('k, 'v, 'cmp) t -> compare:(key:'k -> data:'v -> 'key -> int) -> [ `Last_strictly_less_than | `Last_less_than_or_equal_to | `Last_equal_to | `First_equal_to | `First_greater_than_or_equal_to | `First_strictly_greater_than ] -> 'key -> ('k * 'v) option
binary_search t ~compare which elt
returns the(key, value)
pair int
specified bycompare
andwhich
, if one exists.t
must be sorted in increasing order according tocompare
, wherecompare
andelt
dividet
into three (possibly empty) segments:| < elt | = elt | > elt |
binary_search
returns an element on the boundary of segments as specified bywhich
. See the diagram below next to thewhich
variants.binary_search
does not check thatcompare
orderst
, and behavior is unspecified ifcompare
doesn't ordert
. Behavior is also unspecified ifcompare
mutatest
.
val binary_search_segmented : ('k, 'v, 'cmp) t -> segment_of:(key:'k -> data:'v -> [ `Left | `Right ]) -> [ `Last_on_left | `First_on_right ] -> ('k * 'v) option
binary_search_segmented t ~segment_of which
takes asegment_of
function that dividest
into two (possibly empty) segments:| segment_of elt = `Left | segment_of elt = `Right |
binary_search_segmented
returns the(key, value)
pair on the boundary of the segments as specified bywhich
:`Last_on_left
yields the last element of the left segment, while`First_on_right
yields the first element of the right segment. It returnsNone
if the segment is empty.binary_search_segmented
does not check thatsegment_of
segmentst
as in the diagram, and behavior is unspecified ifsegment_of
doesn't segmentt
. Behavior is also unspecified ifsegment_of
mutatest
.
module M : functor (K : sig ... end) -> sig ... end
M
is meant to be used in combination with OCaml applicative functor types:
include Base__.Map_intf.For_deriving with type ('key, 'value, 'cmp) t := ('key, 'value, 'cmp) t
module type Sexp_of_m = sig ... end
module type M_of_sexp = sig ... end
module type Compare_m = sig ... end
module type Equal_m = sig ... end
module type Hash_fold_m = Base.Hasher.S
val sexp_of_m__t : (module Sexp_of_m with type t = 'k) -> ('v -> Base.Sexp.t) -> ('k, 'v, 'cmp) t -> Base.Sexp.t
val m__t_of_sexp : (module M_of_sexp with type comparator_witness = 'cmp and type t = 'k) -> (Base.Sexp.t -> 'v) -> Base.Sexp.t -> ('k, 'v, 'cmp) t
val m__t_sexp_grammar : Base.Sexp.Private.Raw_grammar.t
val compare_m__t : (module Compare_m) -> ('v -> 'v -> int) -> ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> int
val equal_m__t : (module Equal_m) -> ('v -> 'v -> bool) -> ('k, 'v, 'cmp) t -> ('k, 'v, 'cmp) t -> bool
val hash_fold_m__t : (module Hash_fold_m with type t = 'k) -> (Base.Hash.state -> 'v -> Base.Hash.state) -> Base.Hash.state -> ('k, 'v, _) t -> Base.Hash.state
module Poly : Base__.Map_intf.S_poly with type ('key, +'value) t = ('key, 'value, Base.Comparator.Poly.comparator_witness) t
A polymorphic Map.
module Using_comparator : sig ... end
Using_comparator
is a similar interface as the toplevel ofMap
, except the functions take a~comparator:('k, 'cmp) Comparator.t
, whereas the functions at the toplevel ofMap
take a('k, 'cmp) comparator
.
Modules and module types for extending Map
For use in extensions of Base, like Core_kernel
.
module With_comparator = Base__.Map_intf.With_comparator
module With_first_class_module = Base__.Map_intf.With_first_class_module
module Without_comparator = Base__.Map_intf.Without_comparator
module type For_deriving = Base__.Map_intf.For_deriving
module type S_poly = Base__.Map_intf.S_poly
module type Accessors1 = Base__.Map_intf.Accessors1
module type Accessors2 = Base__.Map_intf.Accessors2
module type Accessors3 = Base__.Map_intf.Accessors3
module type Accessors_generic = Base__.Map_intf.Accessors_generic
module type Creators1 = Base__.Map_intf.Creators1
module type Creators2 = Base__.Map_intf.Creators2
module type Creators_and_accessors3_with_comparator = Base__.Map_intf.Creators_and_accessors3_with_comparator
module type Creators_generic = Base__.Map_intf.Creators_generic