Module Base.Int
include Base__.Int_intf.Int_without_module_types
include Base__.Int_intf.S with type t = int
include Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> t
val sexp_of_t : t -> Sexplib0.Sexp.t
val t_sexp_grammar : Sexp.Private.Raw_grammar.t
include Identifiable.S with type t := t
val hash_fold_t : Hash.state -> t -> Hash.state
val hash : t -> Hash.hash_value
include Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> t
val sexp_of_t : t -> Sexplib0.Sexp.t
include Comparable.S with type t := t
include Base__.Comparable_intf.Polymorphic_compare
val ascending : t -> t -> int
ascending
is identical tocompare
.descending x y = ascending y x
. These are intended to be mnemonic when used likeList.sort ~compare:ascending
andList.sort ~cmp:descending
, since they cause the list to be sorted in ascending or descending order, respectively.
val descending : t -> t -> int
val between : t -> low:t -> high:t -> bool
between t ~low ~high
meanslow <= t <= high
val clamp_exn : t -> min:t -> max:t -> t
clamp_exn t ~min ~max
returnst'
, the closest value tot
such thatbetween t' ~low:min ~high:max
is true.Raises if
not (min <= max)
.
val clamp : t -> min:t -> max:t -> t Or_error.t
include Comparator.S with type t := t
val comparator : (t, comparator_witness) Comparator.comparator
include Base__.Comparable_intf.Validate with type t := t
val validate_lbound : min:t Maybe_bound.t -> t Validate.check
val validate_ubound : max:t Maybe_bound.t -> t Validate.check
val validate_bound : min:t Maybe_bound.t -> max:t Maybe_bound.t -> t Validate.check
include Comparable.With_zero with type t := t
val validate_positive : t Validate.check
val validate_non_negative : t Validate.check
val validate_negative : t Validate.check
val validate_non_positive : t Validate.check
val is_positive : t -> bool
val is_non_negative : t -> bool
val is_negative : t -> bool
val is_non_positive : t -> bool
val sign : t -> Base__.Sign0.t
Returns
Neg
,Zero
, orPos
in a way consistent with the above functions.
val to_string_hum : ?delimiter:char -> t -> string
delimiter
is an underscore by default.
Infix operators and constants
val zero : t
val one : t
val minus_one : t
val (+) : t -> t -> t
val (-) : t -> t -> t
val (*) : t -> t -> t
val (**) : t -> t -> t
Integer exponentiation
Other common functions
include Base__.Int_intf.Round with type t := t
Successor and predecessor functions
Exponentiation
Bit-wise logical operations
Bit-shifting operations
The results are unspecified for negative shifts and shifts >= num_bits
.
Increment and decrement functions for integer references
val decr : t Base__.Import.ref -> unit
val incr : t Base__.Import.ref -> unit
Conversion functions to related integer types
val of_int32_exn : int32 -> t
val to_int32_exn : t -> int32
val of_int64_exn : int64 -> t
val to_int64 : t -> int64
val of_nativeint_exn : nativeint -> t
val to_nativeint_exn : t -> nativeint
val of_float_unchecked : float -> t
of_float_unchecked
truncates the given floating point number to an integer, rounding towards zero. The result is unspecified if the argument is nan or falls outside the range of representable integers.
val num_bits : int
The number of bits available in this integer type. Note that the integer representations are signed.
val max_value : t
The largest representable integer.
val min_value : t
The smallest representable integer.
val shift_right_logical : t -> int -> t
Shifts right, filling in with zeroes, which will not preserve the sign of the input.
val ceil_pow2 : t -> t
ceil_pow2 x
returns the smallest power of 2 that is greater than or equal tox
. The implementation may only be called forx > 0
. Example:ceil_pow2 17 = 32
val floor_pow2 : t -> t
floor_pow2 x
returns the largest power of 2 that is less than or equal tox
. The implementation may only be called forx > 0
. Example:floor_pow2 17 = 16
val ceil_log2 : t -> int
ceil_log2 x
returns the ceiling of log-base-2 ofx
, and raises ifx <= 0
.
val floor_log2 : t -> int
floor_log2 x
returns the floor of log-base-2 ofx
, and raises ifx <= 0
.
val is_pow2 : t -> bool
is_pow2 x
returns true iffx
is a power of 2.is_pow2
raises ifx <= 0
.
val clz : t -> int
Returns the number of leading zeros in the binary representation of the input, as an integer between 0 and one less than
num_bits
.The results are unspecified for
t = 0
.
val ctz : t -> int
Returns the number of trailing zeros in the binary representation of the input, as an integer between 0 and one less than
num_bits
.The results are unspecified for
t = 0
.
module O : Base__.Int_intf.Operators with type t := t
A sub-module designed to be opened to make working with ints more convenient.
val max_value_30_bits : t
max_value_30_bits = 2^30 - 1
. It is useful for writing tests that work on both 64-bit and 32-bit platforms.
Conversion functions
val of_int : int -> t
val to_int : t -> int
val of_int32 : int32 -> t option
val to_int32 : t -> int32 option
val of_int64 : int64 -> t option
val of_nativeint : nativeint -> t option
val to_nativeint : t -> nativeint
Truncating conversions
These functions return the least-significant bits of the input. In cases where optional conversions return Some x
, truncating conversions return x
.
Byte swap operations
Byte swap operations reverse the order of bytes in an integer. For example, Int32.bswap32
reorders the bottom 32 bits (or 4 bytes), turning 0x1122_3344
to 0x4433_2211
. Byte swap functions exposed by Base use OCaml primitives to generate assembly instructions to perform the relevant byte swaps.
For a more extensive list of byteswap functions, see Int32
and Int64
.
module type Hexable = Base__.Int_intf.Hexable
module type Operators = Base__.Int_intf.Operators
module type Operators_unbounded = Base__.Int_intf.Operators_unbounded
module type Round = Base__.Int_intf.Round
module type S = Base__.Int_intf.S
module type S_common = Base__.Int_intf.S_common
module type S_unbounded = Base__.Int_intf.S_unbounded