Module Hardcaml.Fifo

Synchronous FIFO.

type t = {
q : Signal.t;
full : Signal.t;
empty : Signal.t;
nearly_full : Signal.t;
nearly_empty : Signal.t;
used : Signal.t;
}
val sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.t
type create_fifo = ?⁠nearly_empty:Hardcaml__.Import.int -> ?⁠nearly_full:Hardcaml__.Import.int -> ?⁠overflow_check:Hardcaml__.Import.bool -> ?⁠reset:Signal.t -> ?⁠underflow_check:Hardcaml__.Import.bool -> ?⁠ram_attributes:Rtl_attribute.t Hardcaml__.Import.list -> ?⁠scope:Scope.t -> Hardcaml__.Import.unit -> capacity:Hardcaml__.Import.int -> clock:Signal.t -> clear:Signal.t -> wr:Signal.t -> d:Signal.t -> rd:Signal.t -> t
Base RTL FIFO
val create : ?⁠showahead:Hardcaml__.Import.bool -> create_fifo

create ~clock ~clear ~wr ~d ~rd capacity builds a FIFO with capacity elements which is written with d when wr is high and read when rd is high.

The default reset configuration is to use a synchronous clr signal. An asynchronous rst may be optionally provided. One of clr or rst must be non-empty.

Optional overflow and underflow checking may be used. Data will not be written(/read) when the fifo is full(/empty) regardles or the wr/(rd) signals.

nearly_emtpy and nearly_full may be programmed to go high when the fifo is nearing an underflow or overflow state.

The showahead mode changes the read behaviour of the FIFO. When showahead is false read data is available 1 cycle after rd is high. With showahead true the data is available on the same cycle as rd is high. To support showahead behaviour the timing of the full/empty flag also changes (although they still correctly indicate when it is safe to read or write to the FIFO). showahead mode has some extra cost in terms of extra logic. The implementation ensures the output is registered and timing performance is good - nearly as fast as the underlying RAM allows..

Note; showahead is sometimes referred to as "first word fall through".

The used output indicates the number of elements currently in the FIFO.

Derived FIFO architectures.

val create_classic_with_extra_reg : create_fifo

Adds an extra output register to the non-showahead fifo. This delays the output, but ensures there is no logic data on the fifo output. Adds an extra cycle of latency (2 cycles from write to empty low).

val create_showahead_from_classic : create_fifo

Constructs a showahead fifo from a non-showahead fifo. Only modifies the control flags. Has 2 cycles of latency.

val create_showahead_with_extra_reg : create_fifo

Constructs a fifo similarly to create_showahead_from_classic and ensures the output data is registered. Has 3 cycles of latency, but is slightly faster than create ~showahead:true - it seems to only be limited by the underlying RAM frequency.