# Module `Gc.Stat`

`type t`

`=`

`{`

`minor_words : Core_kernel__.Import.float;`

Number of words allocated in the minor heap since the program was started. This number is accurate in byte-code programs, but only an approximation in programs compiled to native code.

`promoted_words : Core_kernel__.Import.float;`

Number of words allocated in the minor heap that survived a minor collection and were moved to the major heap since the program was started.

`major_words : Core_kernel__.Import.float;`

Number of words allocated in the major heap, including the promoted words, since the program was started.

`minor_collections : Core_kernel__.Import.int;`

Number of minor collections since the program was started.

`major_collections : Core_kernel__.Import.int;`

Number of major collection cycles completed since the program was started.

`heap_words : Core_kernel__.Import.int;`

Total size of the major heap, in words.

`heap_chunks : Core_kernel__.Import.int;`

Number of contiguous pieces of memory that make up the major heap.

`live_words : Core_kernel__.Import.int;`

Number of words of live data in the major heap, including the header words.

`live_blocks : Core_kernel__.Import.int;`

Number of live blocks in the major heap.

`free_words : Core_kernel__.Import.int;`

Number of words in the free list.

`free_blocks : Core_kernel__.Import.int;`

Number of blocks in the free list.

`largest_free : Core_kernel__.Import.int;`

Size (in words) of the largest block in the free list.

`fragments : Core_kernel__.Import.int;`

Number of wasted words due to fragmentation. These are 1-words free blocks placed between two live blocks. They are not available for allocation.

`compactions : Core_kernel__.Import.int;`

Number of heap compactions since the program was started.

`top_heap_words : Core_kernel__.Import.int;`

Maximum size reached by the major heap, in words.

`stack_size : Core_kernel__.Import.int;`

Current size of the stack, in words.

`}`

`include Bin_prot.Binable.S with type t := t`

`include Bin_prot.Binable.S_only_functions with type t := t`

`val bin_size_t : t Bin_prot.Size.sizer`

`val bin_write_t : t Bin_prot.Write.writer`

`val bin_read_t : t Bin_prot.Read.reader`

`val __bin_read_t__ : (int -> t) Bin_prot.Read.reader`

This function only needs implementation if

`t`

exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant`t`

afterwards.

`val bin_shape_t : Bin_prot.Shape.t`

`val bin_writer_t : t Bin_prot.Type_class.writer`

`val bin_reader_t : t Bin_prot.Type_class.reader`

`val bin_t : t Bin_prot.Type_class.t`

`include Ppx_sexp_conv_lib.Sexpable.S with type t := t`

`val t_of_sexp : Sexplib0.Sexp.t -> t`

`val sexp_of_t : t -> Sexplib0.Sexp.t`

`val stack_size : t -> Core_kernel__.Import.int`

`val top_heap_words : t -> Core_kernel__.Import.int`

`val compactions : t -> Core_kernel__.Import.int`

`val fragments : t -> Core_kernel__.Import.int`

`val largest_free : t -> Core_kernel__.Import.int`

`val free_blocks : t -> Core_kernel__.Import.int`

`val free_words : t -> Core_kernel__.Import.int`

`val live_blocks : t -> Core_kernel__.Import.int`

`val live_words : t -> Core_kernel__.Import.int`

`val heap_chunks : t -> Core_kernel__.Import.int`

`val heap_words : t -> Core_kernel__.Import.int`

`val major_collections : t -> Core_kernel__.Import.int`

`val minor_collections : t -> Core_kernel__.Import.int`

`val major_words : t -> Core_kernel__.Import.float`

`val promoted_words : t -> Core_kernel__.Import.float`

`val minor_words : t -> Core_kernel__.Import.float`

`module Fields : sig ... end`

`include Core_kernel.Comparable.S with type t := t`

`include Core_kernel__.Comparable_intf.S_common`

`include Base.Comparable.S`

`include Base__.Comparable_intf.Polymorphic_compare`

`val ascending : t -> t -> int`

`ascending`

is identical to`compare`

.`descending x y = ascending y x`

. These are intended to be mnemonic when used like`List.sort ~compare:ascending`

and`List.sort ~cmp:descending`

, since they cause the list to be sorted in ascending or descending order, respectively.

`val descending : t -> t -> int`

`val between : t -> low:t -> high:t -> bool`

`between t ~low ~high`

means`low <= t <= high`

`val clamp_exn : t -> min:t -> max:t -> t`

`clamp_exn t ~min ~max`

returns`t'`

, the closest value to`t`

such that`between t' ~low:min ~high:max`

is true.Raises if

`not (min <= max)`

.

`val clamp : t -> min:t -> max:t -> t Base.Or_error.t`

`include Base.Comparator.S with type t := t`

`val comparator : (t, comparator_witness) Base.Comparator.comparator`

`include Base__.Comparable_intf.Validate with type t := t`

`val validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.check`

`val validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.check`

`val validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.check`

`module Replace_polymorphic_compare : Core_kernel__.Comparable_intf.Polymorphic_compare with type t := t`

`module Map : Core_kernel.Map.S with type Key.t = t with type Key.comparator_witness = comparator_witness`

`module Set : Core_kernel.Set.S with type Elt.t = t with type Elt.comparator_witness = comparator_witness`