Module Core.Interval
Intervals using polymorphic compare
This part of the interface is for polymorphic intervals, which are well ordered by polymorphic compare. Using this with types that are not (like sets) will lead to crazy results.
type 'a tThis type
tsupports bin-io and sexp conversion by way of the[@@deriving bin_io, sexp]extensions, which inline the relevant function signatures (likebin_read_tandt_of_sexp).
include Bin_prot.Binable.S1 with type 'a t := 'a t
val bin_shape_t : Bin_prot.Shape.t -> Bin_prot.Shape.tval bin_size_t : ('a, 'a t) Bin_prot.Size.sizer1val bin_write_t : ('a, 'a t) Bin_prot.Write.writer1val bin_read_t : ('a, 'a t) Bin_prot.Read.reader1val __bin_read_t__ : ('a, int -> 'a t) Bin_prot.Read.reader1val bin_writer_t : ('a, 'a t) Bin_prot.Type_class.S1.writerval bin_reader_t : ('a, 'a t) Bin_prot.Type_class.S1.readerval bin_t : ('a, 'a t) Bin_prot.Type_class.S1.t
include Ppx_sexp_conv_lib.Sexpable.S1 with type 'a t := 'a t
val t_of_sexp : (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a tval sexp_of_t : ('a -> Sexplib0.Sexp.t) -> 'a t -> Sexplib0.Sexp.t
val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> intval hash_fold_t : (Base.Hash.state -> 'a -> Base.Hash.state) -> Base.Hash.state -> 'a t -> Base.Hash.state
type 'a ttype 'a boundboundis the type of points in the interval (and therefore of the bounds).boundis instantiated in two different ways below: inmodule type Sas a monotype and inmodule type S1as'a.
val create : 'a bound -> 'a bound -> 'a tcreate l ureturns the interval with lower boundland upper boundu, unlessl > u, in which case it returns the empty interval.
val empty : 'a tval intersect : 'a t -> 'a t -> 'a tval is_empty : 'a t -> boolval is_empty_or_singleton : 'a t -> boolval bounds : 'a t -> ('a bound * 'a bound) optionval lbound : 'a t -> 'a bound optionval ubound : 'a t -> 'a bound optionval bounds_exn : 'a t -> 'a bound * 'a boundval lbound_exn : 'a t -> 'a boundval ubound_exn : 'a t -> 'a boundval convex_hull : 'a t list -> 'a tconvex_hull tsreturns an interval whose upper bound is the greatest upper bound of the intervals in the list, and whose lower bound is the least lower bound of the list.Suppose you had three intervals
a,b, andc:a: ( ) b: ( ) c: ( ) hull: ( )In this case the hull goes from
lbound_exn atoubound_exn c.
val contains : 'a t -> 'a bound -> boolval compare_value : 'a t -> 'a bound -> [ `Below | `Within | `Above | `Interval_is_empty ]val bound : 'a t -> 'a bound -> 'a bound optionbound t xreturnsNoneiffis_empty t. Ifbounds t = Some (a, b), thenboundreturnsSome ywhereyis the element oftclosest tox. I.e.:y = a if x < a y = x if a <= x <= b y = b if x > b
val is_superset : 'a t -> of_:'a t -> boolis_superset i1 of_:i2is whether i1 contains i2. The empty interval is contained in every interval.
val is_subset : 'a t -> of_:'a t -> boolval map : 'a t -> f:('a bound -> 'b bound) -> 'b tmap t ~freturnscreate (f l) (f u)ifbounds t = Some (l, u), andemptyiftis empty. Note that iff l > f u, the result ofmapisempty, by the definition ofcreate.If you think of an interval as a set of points, rather than a pair of its bounds, then
mapis not the same as the usual mathematical notion of mappingfover that set. For example,map ~f:(fun x -> x * x)maps the interval[-1,1]to[1,1], not to[0,1].
val are_disjoint : 'a t list -> boolare_disjoint tsreturnstrueiff the intervals intsare pairwise disjoint.
val are_disjoint_as_open_intervals : 'a t list -> boolReturns true iff a given set of intervals would be disjoint if considered as open intervals, e.g.,
(3,4)and(4,5)would count as disjoint according to this function.
val list_intersect : 'a t list -> 'a t list -> 'a t listAssuming that
ilist1andilist2are lists of disjoint intervals,list_intersect ilist1 ilist2considers the intersection(intersect i1 i2)of every pair of intervals(i1, i2), withi1drawn fromilist1andi2fromilist2, returning just the non-empty intersections. By construction these intervals will be disjoint, too. For example:let i = Interval.create;; list_intersect [i 4 7; i 9 15] [i 2 4; i 5 10; i 14 20];; [(4, 4), (5, 7), (9, 10), (14, 15)]Raises an exception if either input list is non-disjoint.
val half_open_intervals_are_a_partition : 'a t list -> boolReturns true if the intervals, when considered as half-open intervals, nestle up cleanly one to the next. I.e., if you sort the intervals by the lower bound, then the upper bound of the
nth interval is equal to the lower bound of then+1th interval. The intervals do not need to partition the entire space, they just need to partition their union.
Type-specialized intervals
The module type S is used to define signatures for intervals over a specific type, like Interval.Ofday (whose bounds are Time.Ofday.t) or Interval.Float, whose bounds are floats.
Note the heavy use of destructive substitution, which removes the redefined type or module from the signature. This allows for clean type constraints in codebases, like Core's, where there are lots of types going by the same name (e.g., "t").
Signatures
The following signatures are used for specifying the types of the type-specialized intervals.
module type S1 = Interval_intf.S1Specialized interval types
module Ofday : S with type bound = Core__.Import_time.Time.Ofday.tmodule Ofday_ns : S with type bound = Interval_intf.Time_ns.Ofday.tmodule Time : S_time with module Time := Core__.Import_time.Time and type t = Core__.Import_time.Time.t tmodule Time_ns : S_time with module Time := Interval_intf.Time_ns and type t = Interval_intf.Time_ns.t tmodule Float : S with type bound = Core__.Import.Float.tmodule Int : sig ... endmodule Make : functor (Bound : sig ... end) -> S with type bound = Bound.tInterval.Makeis a functor that takes a type that you'd like to create intervals for and returns a module with functions over intervals of that type.
module Stable : sig ... endStableis used to build stable protocols. It ensures backwards compatibility by checking the sexp and bin-io representations of a given module. Here it's also applied to theFloat,Int,Time,Time_ns, andOfdayintervals.