Module Bignum
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.state
val hash : t -> Base.Hash.hash_value
Sexp conversions represent values as decimals if possible, or defaults to (x + y/z)
where x
is decimal and y
and z
are integers. So for example, 1/3 <-> (0.333333333 + 1/3000000000). In string and sexp conversions, values with denominator of zero are special-cased: 0/0 <-> "nan", 1/0 <-> "inf", and -1/0 <-> "-inf".
include Core_kernel.Sexpable with type t := t
val t_of_sexp : Base.Sexp.t -> t
val sexp_of_t : t -> Base.Sexp.t
include Core_kernel.Comparable with type t := t
include Core_kernel__.Comparable_intf.S_common
include Base.Comparable.S
include Base__.Comparable_intf.Polymorphic_compare
val ascending : t -> t -> int
ascending
is identical tocompare
.descending x y = ascending y x
. These are intended to be mnemonic when used likeList.sort ~compare:ascending
andList.sort ~cmp:descending
, since they cause the list to be sorted in ascending or descending order, respectively.
val descending : t -> t -> int
val between : t -> low:t -> high:t -> bool
between t ~low ~high
meanslow <= t <= high
val clamp_exn : t -> min:t -> max:t -> t
clamp_exn t ~min ~max
returnst'
, the closest value tot
such thatbetween t' ~low:min ~high:max
is true.Raises if
not (min <= max)
.
val clamp : t -> min:t -> max:t -> t Base.Or_error.t
include Base.Comparator.S with type t := t
val comparator : (t, comparator_witness) Base.Comparator.comparator
include Base__.Comparable_intf.Validate with type t := t
val validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.check
module Replace_polymorphic_compare : Core_kernel__.Comparable_intf.Polymorphic_compare with type t := t
module Map : Core_kernel.Map.S with type Key.t = t with type Key.comparator_witness = comparator_witness
module Set : Core_kernel.Set.S with type Elt.t = t with type Elt.comparator_witness = comparator_witness
include Core_kernel.Hashable with type t := t
include Core_kernel.Hashable.Common
val compare : t -> t -> Core_kernel__.Import.int
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.state
val hash : t -> Base.Hash.hash_value
val hashable : t Core_kernel.Hashtbl.Hashable.t
module Table : Core_kernel.Hashtbl.S with type key = t
module Hash_set : Core_kernel.Hash_set.S with type elt = t
module Hash_queue : Core_kernel.Hash_queue.S with type key = t
gen
produces values with an order of magnitude (roughly the number of digits) in the numerator and denominator proportional to Quickcheck.Generator.size
. Also includes values with zero in the denominator.
include Core_kernel.Quickcheckable with type t := t
val quickcheck_generator : t Base_quickcheck.Generator.t
val quickcheck_observer : t Base_quickcheck.Observer.t
val quickcheck_shrinker : t Base_quickcheck.Shrinker.t
val zero : t
val one : t
val ten : t
val hundred : t
val thousand : t
val million : t
val billion : t
val trillion : t
val tenth : t
val hundredth : t
val thousandth : t
val millionth : t
val billionth : t
val trillionth : t
val (+) : t -> t -> t
val (-) : t -> t -> t
val (/) : t -> t -> t
Note that division by zero will not raise, but will return inf, -inf, or nan.
val (//) : int -> int -> t
m // n
is equivalent toof_int m / of_int n
. Example:Bigint.O.(2 // 3)
.
val (*) : t -> t -> t
val (**) : t -> int -> t
Beware:
2 ** 8_000_000
will take at least a megabyte to store the result, and multiplying numbers a megabyte long is slow no matter how clever your algorithm. Be careful to ensure the second argument is reasonably-sized.
val abs : t -> t
val neg : t -> t
val inverse : t -> t
Note that
inverse zero
isinfinity
, not an error.
val sum : t list -> t
val round : ?dir:[ `Down | `Up | `Nearest | `Zero ] -> ?to_multiple_of:t -> t -> t
Default rounding direction is
`Nearest
.to_multiple_of
defaults toone
and must not bezero
.
val iround : ?dir:[ `Down | `Up | `Nearest | `Zero ] -> ?to_multiple_of:int -> t -> int option
None
if the result would overflow orto_multiple_of
is zero.
val round_as_bigint : ?dir:[ `Down | `Up | `Nearest | `Zero ] -> ?to_multiple_of:Bigint.t -> t -> Bigint.t option
val iround_exn : ?dir:[ `Down | `Up | `Nearest | `Zero ] -> ?to_multiple_of:int -> t -> int
Exception if the result would overflow or
to_multiple_of
is zero.
val round_as_bigint_exn : ?dir:[ `Down | `Up | `Nearest | `Zero ] -> ?to_multiple_of:Bigint.t -> t -> Bigint.t
val round_decimal : ?dir:[ `Down | `Up | `Nearest | `Zero ] -> digits:int -> t -> t
Convenience wrapper around
round
to round to the specified number of decimal digits. This raises if the number is infinite or undefined.
val round_decimal_to_nearest_half_to_even : digits:int -> t -> t
val to_float : t -> float
val to_string_decimal_accurate_exn : t -> string
Accurate if possible. If this number is not representable as a finite decimal fraction, it raises instead.
val to_string_decimal_accurate : t -> string Core_kernel.Or_error.t
As above, returns Or_error.t instead of raising
val is_representable_as_decimal : t -> bool
true
if and only ifto_string_decimal_accurate_exn
doesn't raise.
val is_real : t -> bool
true
if and only if the number is non-infinity and non-undefined.
val is_nan : t -> bool
true
if and only if the number is undefined.
val to_string_hum : ?delimiter:char -> ?decimals:int -> ?strip_zero:bool -> t -> string
Pretty print bignum in an approximate decimal form or print inf, -inf, nan. For example
to_string_hum ~delimiter:',' ~decimals:3 ~strip_zero:false 1234.1999 = "1,234.200"
. No delimiters are inserted to the right of the decimal.
val to_string_accurate : t -> string
Always accurate. If the number is representable as a finite decimal, it will return this decimal string. If the denomiator is zero, it would return "nan", "inf" or "-inf". Finally, if the bignum is a rational non representable as a decimal,
to_string_accurate t
returns an expression that evaluates to the right value. Example:to_string_accurate (Bignum.of_string "1/3") = "(0.333333333 + 1/3000000000)"
.Since the introduction of that function in the API,
of_string
is able to read any value returned by this function, and would yield the original bignum. That is:fun bignum -> bignum |> to_string_accurate |> of_string
is the identity in
Bignum
.
val of_float_decimal : float -> t
Transforming a
float
into aBignum.t
needs to be done with care. Most rationals and decimals are not exactly representable as floats, thus their float representation includes some small imprecision at the end of their decimal form (typically after the 17th digits). It is very likely that when transforming afloat
into aBignum.t
, it is best to try to determine which was the original value and retrieve it instead of honoring the noise coming from its imprecise float representation.Given that the original value is not available in the context of a function whose type is
float -> Bignum.t
, it is not possible to solve that problem in a principled way. However, a very reasonable approximation is to build theBignum
from a short string-representation of the float that guarantees the round-tripfloat |> to_string |> of_string
. In particular, if the float was obtained from a short decimal string, this heuristic in practice succeeds at retrieving the original value.In the context where it is assumed that a float is a perfect representative of the value meant to be modelled, the actual
Bignum.t
value for it may be built usingof_float_dyadic
.For example:
3.14
is not a representable decimal, thus:of_float_dyadic (Float.of_string "3.14") = (3.14 + 7/56294995342131200)
of_float_decimal (Float.of_string "3.14") = 3.14
of_float_dyadic
used to be calledof_float
but we think it is not the right default choice, thusof_float
was deprecated, and we introduced different names for this operation to force some explicit decision at call site.After some time has passed,
of_float_decimal
will be renamed toof_float
, thus re-introducingof_float
in the API.
val of_float_dyadic : float -> t
val of_float : float -> t
val to_int : t -> int option
Rounds toward zero.
None
if the conversion would overflow
val to_int_exn : t -> int
val is_zero : t -> bool
val sign : t -> int
Do not use this function in new code. See
sign_exn
orsign_or_nan
instead.Returns -1, 0, or 1 according to the sign of the input. Due to an accidental oversight,
sign nan
= -1.
val sign_exn : t -> Core_kernel.Sign.t
The sign of a Bignum. Raises on nan.
val sign_or_nan : t -> Core_kernel.Sign_or_nan.t
val of_string : string -> t
val of_int : int -> t
val num : t -> t
num t
returns the numerator of the numeric
val of_bigint : Bigint.t -> t
val num_as_bigint : t -> Bigint.t
val den_as_bigint : t -> Bigint.t
val pp_hum : Stdlib.Format.formatter -> t -> unit
val pp_accurate : Stdlib.Format.formatter -> t -> unit
val gen_finite : t Core_kernel.Quickcheck.Generator.t
gen_finite
is likegen
but excludes values with zero in the denominator.
val gen_uniform_excl : t -> t -> t Core_kernel.Quickcheck.Generator.t
gen_uniform_excl lower_bound upper_bound
produces a uniform distribution betweenlower_bound
andupper_bound
, exclusive, in units based on the fractional parts of the bounds plus a number of decimal places proportional toQuickcheck.Generator.size
.
val gen_incl : t -> t -> t Core_kernel.Quickcheck.Generator.t
gen_incl lower_bound upper_bound
produces a distribution of values betweenlower_bound
andupper_bound
, inclusive, that is approximately uniform with extra weight given to producing the endpointslower_bound
andupper_bound
.
module Stable : sig ... end
module Unstable : sig ... end
module O : sig ... end
module For_testing : sig ... end
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (int -> t) Bin_prot.Read.reader
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_t : t Bin_prot.Type_class.t