Module Base__.Applicative
module type Applicative_infix = Base__.Applicative_intf.Applicative_infixmodule type Applicative_infix2 = Base__.Applicative_intf.Applicative_infix2module type Applicative_infix3 = Base__.Applicative_intf.Applicative_infix3module type Basic = Base__.Applicative_intf.Basicmodule type Basic2 = Base__.Applicative_intf.Basic2module type Basic3 = Base__.Applicative_intf.Basic3module type Basic_using_map2 = Base__.Applicative_intf.Basic_using_map2module type Basic2_using_map2 = Base__.Applicative_intf.Basic2_using_map2module type Basic3_using_map2 = Base__.Applicative_intf.Basic3_using_map2module type Let_syntax = Base__.Applicative_intf.Let_syntaxmodule type Let_syntax2 = Base__.Applicative_intf.Let_syntax2module type Let_syntax3 = Base__.Applicative_intf.Let_syntax3module type S = Base__.Applicative_intf.Smodule type S2 = Base__.Applicative_intf.S2module type S3 = Base__.Applicative_intf.S3module Make_let_syntax : functor (X : Base__.Applicative_intf.For_let_syntax) -> functor (Intf : sig ... end) -> functor (Impl : Intf.S) -> Let_syntax with type 'a t := 'a X.t with module Open_on_rhs_intf := Intfmodule Make_let_syntax2 : functor (X : Base__.Applicative_intf.For_let_syntax2) -> functor (Intf : sig ... end) -> functor (Impl : Intf.S) -> Let_syntax2 with type ('a, 'e) t := ('a, 'e) X.t with module Open_on_rhs_intf := Intfmodule Make_let_syntax3 : functor (X : Base__.Applicative_intf.For_let_syntax3) -> functor (Intf : sig ... end) -> functor (Impl : Intf.S) -> Let_syntax3 with type ('a, 'd, 'e) t := ('a, 'd, 'e) X.t with module Open_on_rhs_intf := Intfmodule Make_using_map2 : functor (X : Basic_using_map2) -> S with type 'a t := 'a X.tmodule Make2_using_map2 : functor (X : Basic2_using_map2) -> S2 with type ('a, 'e) t := ('a, 'e) X.tmodule Make3_using_map2 : functor (X : Basic3_using_map2) -> S3 with type ('a, 'd, 'e) t := ('a, 'd, 'e) X.t