module type S =sig
..end
type
t
val typerep_of_t : t Typerep_kernel.Std.Typerep.t
val typename_of_t : t Typerep_kernel.Std.Typename.t
include Floatable
include Intable
include Identifiable
include Comparable.With_zero
val to_string_hum : ?delimiter:char -> t -> string
delimiter
is underscore by defaultval num_bits : int
val zero : t
val one : t
val minus_one : t
val (+) : t -> t -> t
val (-) : t -> t -> t
val ( * ) : t -> t -> t
val (/) : t -> t -> t
val neg : t -> t
val (~-) : t -> t
module O:sig
..end
val succ : t -> t
val pred : t -> t
val abs : t -> t
min_value
val rem : t -> t -> t
mod
in Pervasives
or rem
in
Int32/64
, i.e. if y
is not zero, the result of rem x y
satisfies the
following properties: x = (x / y) * y + rem x y
and abs (rem x y) <= abs y - 1
.
If y = 0
, rem x y
raises Division_by_zero
. Notice that rem x y
is
nonpositive if and only if x < 0
.val max_value : t
The smallest representable integer
val min_value : t
val bit_and : t -> t -> t
val bit_or : t -> t -> t
val bit_xor : t -> t -> t
val bit_not : t -> t
The results are unspecified for negative shifts and shifts >= num_bits
val shift_left : t -> int -> t
shifts right, preserving the sign of the input.
val shift_right : t -> int -> t
val shift_right_logical : t -> int -> t
val decr : t Pervasives.ref -> unit
val incr : t Pervasives.ref -> unit
val of_int32_exn : int32 -> t
val to_int32_exn : t -> int32
val of_int64_exn : int64 -> t
val to_int64 : t -> int64
val of_nativeint_exn : nativeint -> t
val to_nativeint_exn : t -> nativeint
val t_of_sexp : Sexplib.Sexp.t -> t
val sexp_of_t : t -> Sexplib.Sexp.t
val bin_t : t Bin_prot.Type_class.t
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (int -> t) Bin_prot.Read.reader
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_writer_t : t Bin_prot.Type_class.writer
delimiter
is underscore by defaultmin_value
mod
in Pervasives
or rem
in
Int32/64
, i.e. if y
is not zero, the result of rem x y
satisfies the
following properties: x = (x / y) * y + rem x y
and abs (rem x y) <= abs y - 1
.
If y = 0
, rem x y
raises Division_by_zero
. Notice that rem x y
is
nonpositive if and only if x < 0
.
The results are unspecified for negative shifts and shifts >= num_bits
shifts left, filling in with zeroes
shifts right, preserving the sign of the input.
shifts right, filling in with zeroes, which will not preserve the sign of the
input