module type S =sig..end
type t
val typerep_of_t : t Typerep_kernel.Std.Typerep.tval typename_of_t : t Typerep_kernel.Std.Typename.tinclude Floatable
include Intable
include Identifiable
include Comparable.With_zero
val to_string_hum : ?delimiter:char -> t -> stringdelimiter is underscore by defaultval num_bits : intval zero : tval one : tval minus_one : tval (+) : t -> t -> tval (-) : t -> t -> tval ( * ) : t -> t -> tval (/) : t -> t -> tval neg : t -> tval (~-) : t -> tmodule O:sig..end
val succ : t -> tval pred : t -> tval abs : t -> tmin_valueval rem : t -> t -> tmod in Pervasives or rem in
Int32/64, i.e. if y is not zero, the result of rem x y satisfies the
following properties: x = (x / y) * y + rem x y and abs (rem x y) <= abs y - 1.
If y = 0, rem x y raises Division_by_zero. Notice that rem x y is
nonpositive if and only if x < 0.val max_value : t
The smallest representable integer
val min_value : tval bit_and : t -> t -> tval bit_or : t -> t -> tval bit_xor : t -> t -> tval bit_not : t -> t
The results are unspecified for negative shifts and shifts >= num_bits
val shift_left : t -> int -> t
shifts right, preserving the sign of the input.
val shift_right : t -> int -> tval shift_right_logical : t -> int -> tval decr : t Pervasives.ref -> unitval incr : t Pervasives.ref -> unitval of_int32_exn : int32 -> tval to_int32_exn : t -> int32val of_int64_exn : int64 -> tval to_int64 : t -> int64val of_nativeint_exn : nativeint -> tval to_nativeint_exn : t -> nativeintval t_of_sexp : Sexplib.Sexp.t -> tval sexp_of_t : t -> Sexplib.Sexp.tval bin_t : t Bin_prot.Type_class.tval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int -> t) Bin_prot.Read.readerval bin_reader_t : t Bin_prot.Type_class.readerval bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_writer_t : t Bin_prot.Type_class.writerdelimiter is underscore by defaultmin_valuemod in Pervasives or rem in
Int32/64, i.e. if y is not zero, the result of rem x y satisfies the
following properties: x = (x / y) * y + rem x y and abs (rem x y) <= abs y - 1.
If y = 0, rem x y raises Division_by_zero. Notice that rem x y is
nonpositive if and only if x < 0.
The results are unspecified for negative shifts and shifts >= num_bits
shifts left, filling in with zeroes
shifts right, preserving the sign of the input.
shifts right, filling in with zeroes, which will not preserve the sign of the
input