module Common:sig
..end
exception Bug of string
exception Finally of exn * exn
val unimplemented : string -> 'a Or_error.t
type
read_only
typeimmutable = private
read_only
typeread_write = private
read_only
typenever_returns =
Never_returns.never_returns
never_returns
should be used as the return type of functions that don't return and
might block forever, rather than 'a
or _
. This forces callers of such functions
to have a call to never_returns
at the call site, which makes it clear to readers
what's going on. We do not intend to use this type for functions such as failwithf
that always raise an exception.val never_returns : never_returns -> 'a
val protect : f:(unit -> 'a) -> finally:(unit -> unit) -> 'a
val protectx : f:('b -> 'a) -> 'b -> finally:('b -> unit) -> 'a
val fst3 : 'a * 'b * 'c -> 'a
val snd3 : 'b * 'a * 'c -> 'a
val trd3 : 'b * 'c * 'a -> 'a
val uw : 'a option -> 'a
val is_none : 'a option -> bool
val is_some : 'a option -> bool
val (|!) : 'a -> ('a -> 'b) -> 'b
val (|>) : 'a -> ('a -> 'b) -> 'b
val ident : 'a -> 'a
val const : 'a -> 'b -> 'a
val (==>) : bool -> bool -> bool
val failwiths : string -> 'a -> ('a -> Sexplib.Sexp.t) -> 'b
val failwithp : Lexing.position -> string -> 'a -> ('a -> Sexplib.Sexp.t) -> 'b
val failwithf : ('r, unit, string, unit -> 'a) Pervasives.format4 -> 'r
val invalid_argf : ('r, unit, string, unit -> 'a) Pervasives.format4 -> 'r
val does_raise : (unit -> 'a) -> bool
does_raise f
returns true
iff f ()
raises. It is intended to be used in unit
tests and should probably not be used in regular code.val ok_exn : 'a Or_error.t -> 'a
Or_error.ok_exn
val error : string -> 'a -> ('a -> Sexplib.Sexp.t) -> 'b Or_error.t
Or_error.error
type 'a
return = private {
|
return : |
with_return f
allows for something like the return statement in C within f
. There
are three ways f
can terminate:
1. If f
calls r.return x
, then x
is returned by with_return
.
2. If f
evaluates to a value x
, then x
is returned by with_return
.
3. If f
raises an exception, it escapes with_return
.
Here is a typical example:
let find l ~f =
with_return (fun r ->
List.iter l ~f:(fun x -> if f x then r.return (Some x));
None
)
It is only because of a deficiency of ML types that with_return
doesn't have type:
val with_return : 'a. (('a -> ('b. 'b)) -> 'a) -> 'a
but we can slightly increase the scope of 'b, without changing the meaning of the type and then we get
type 'a return = { return : 'b . 'a -> 'b }
val with_return : ('a return -> 'a) -> 'a
But the actual reason we chose to use a record type with polymorphic field is that
otherwise we would have to clobber the namespace of functions with return
and that is
undesirable because return
would get hidden as soon as we open any monad. We
considered names different than return
but everything seemed worse than just having
return
as a record field. We are clobbering the namespace of record fields but that
is much more acceptable.
val with_return : ('a return -> 'a) -> 'a
val phys_equal : 'a -> 'a -> bool
==
and !=
and replace them with the longer and more mnemonic
phys_equal
because they too easily lead to mistakes (for example they don't even
work right on Int64 or Float). One can usually use the equal
function for a
specific type, or use (=) or (<>) for built in types like char, int, float,val (==) : [ `Consider_using_phys_equal ] ->
[ `Consider_using_phys_equal ] -> [ `Consider_using_phys_equal ]
val (!=) : [ `Consider_using_phys_equal ] ->
[ `Consider_using_phys_equal ] -> [ `Consider_using_phys_equal ]
val phys_same : 'a -> 'b -> bool
phys_same
is like phys_equal
, but with a more general type. phys_same
is useful
when dealing with existential types, when one has a packed value and an unpacked value
that one wants to check are physically equal. One can't use phys_equal
in such a
situation because the types are different.val force : 'a Lazy.t -> 'a
val stage : 'a -> 'a Staged.t
module : Staged
for documentationval unstage : 'a Staged.t -> 'a
exception C_malloc_exn of int * int
The following section contains definitions that hide operations from the standard
library that are considered problematic or confusing, or simply redundant.
val seek_out : [ `Deprecated_use_out_channel ] ->
[ `Deprecated_use_out_channel ] -> [ `Deprecated_use_out_channel ]
val pos_out : [ `Deprecated_use_out_channel ] -> [ `Deprecated_use_out_channel ]
val out_channel_length : [ `Deprecated_use_out_channel ] -> [ `Deprecated_use_out_channel ]
val seek_in : [ `Deprecated_use_in_channel ] ->
[ `Deprecated_use_in_channel ] -> [ `Deprecated_use_in_channel ]
val pos_in : [ `Deprecated_use_in_channel ] -> [ `Deprecated_use_in_channel ]
val in_channel_length : [ `Deprecated_use_in_channel ] -> [ `Deprecated_use_in_channel ]
val modf : [ `Deprecated_use_float_modf ] -> [ `Deprecated_use_float_modf ]
val truncate : [ `Deprecated_use_float_iround_towards_zero ] ->
[ `Deprecated_use_float_iround_towards_zero ]
val close_in : [ `Deprecated_use_in_channel ] -> [ `Deprecated_use_in_channel ]
val close_out : [ `Deprecated_use_out_channel ] -> [ `Deprecated_use_out_channel ]
val (&) : [ `Deprecated_use_two_ampersands ] ->
[ `Deprecated_use_two_ampersands ] -> [ `Deprecated_use_two_ampersands ]
val max_int : [ `Deprecated_use_int_module ]
val min_int : [ `Deprecated_use_int_module ]
val ceil : [ `Deprecated_use__Float__round_up ] -> [ `Deprecated_use__Float__round_up ]
val floor : [ `Deprecated_use__Float__round_down ] ->
[ `Deprecated_use__Float__round_down ]
val abs_float : [ `Deprecated_use_float_module ] -> [ `Deprecated_use_float_module ]
val mod_float : [ `Deprecated_use_float_module ] -> [ `Deprecated_use_float_module ]
val frexp : [ `Deprecated_use_float_module ] ->
[ `Deprecated_use_float_module ] -> [ `Deprecated_use_float_module ]
val ldexp : [ `Deprecated_use_float_module ] ->
[ `Deprecated_use_float_module ] -> [ `Deprecated_use_float_module ]
val float_of_int : [ `Deprecated_use_float_module ] -> [ `Deprecated_use_float_module ]
val max_float : [ `Deprecated_use_float_module ]
val min_float : [ `Deprecated_use_float_module ]
val epsilon_float : [ `Deprecated_use_float_module ]
val classify_float : [ `Deprecated_use_float_module ] -> [ `Deprecated_use_float_module ]
val string_of_float : [ `Deprecated_use_float_module ] -> [ `Deprecated_use_float_module ]
val float_of_string : [ `Deprecated_use_float_module ] -> [ `Deprecated_use_float_module ]
val infinity : [ `Deprecated_use_float_module ]
val neg_infinity : [ `Deprecated_use_float_module ]
val nan : [ `Deprecated_use_float_module ]
val int_of_float : [ `Deprecated_use_float_module ] -> [ `Deprecated_use_float_module ]
typefpclass =
[ `Deprecated_use_float_module ]
val compare_read_only : read_only -> read_only -> int
val bin_read_only : read_only Bin_prot.Type_class.t
val bin_read_read_only : read_only Bin_prot.Read.reader
val __bin_read_read_only__ : (int -> read_only) Bin_prot.Read.reader
val bin_reader_read_only : read_only Bin_prot.Type_class.reader
val bin_size_read_only : read_only Bin_prot.Size.sizer
val bin_write_read_only : read_only Bin_prot.Write.writer
val bin_writer_read_only : read_only Bin_prot.Type_class.writer
val read_only_of_sexp : Sexplib.Sexp.t -> read_only
val sexp_of_read_only : read_only -> Sexplib.Sexp.t
val compare_immutable : immutable -> immutable -> int
val bin_immutable : immutable Bin_prot.Type_class.t
val bin_read_immutable : immutable Bin_prot.Read.reader
val __bin_read_immutable__ : (int -> immutable) Bin_prot.Read.reader
val bin_reader_immutable : immutable Bin_prot.Type_class.reader
val bin_size_immutable : immutable Bin_prot.Size.sizer
val bin_write_immutable : immutable Bin_prot.Write.writer
val bin_writer_immutable : immutable Bin_prot.Type_class.writer
val immutable_of_sexp : Sexplib.Sexp.t -> immutable
val sexp_of_immutable : immutable -> Sexplib.Sexp.t
val compare_read_write : read_write -> read_write -> int
val bin_read_write : read_write Bin_prot.Type_class.t
val bin_read_read_write : read_write Bin_prot.Read.reader
val __bin_read_read_write__ : (int -> read_write) Bin_prot.Read.reader
val bin_reader_read_write : read_write Bin_prot.Type_class.reader
val bin_size_read_write : read_write Bin_prot.Size.sizer
val bin_write_read_write : read_write Bin_prot.Write.writer
val bin_writer_read_write : read_write Bin_prot.Type_class.writer
val read_write_of_sexp : Sexplib.Sexp.t -> read_write
val sexp_of_read_write : read_write -> Sexplib.Sexp.t
val sexp_of_never_returns : never_returns -> Sexplib.Sexp.t
never_returns
should be used as the return type of functions that don't return and
might block forever, rather than 'a
or _
. This forces callers of such functions
to have a call to never_returns
at the call site, which makes it clear to readers
what's going on. We do not intend to use this type for functions such as failwithf
that always raise an exception.does_raise f
returns true
iff f ()
raises. It is intended to be used in unit
tests and should probably not be used in regular code.Or_error.ok_exn
Or_error.error
with_return f
allows for something like the return statement in C within f
. There
are three ways f
can terminate:
1. If f
calls r.return x
, then x
is returned by with_return
.
2. If f
evaluates to a value x
, then x
is returned by with_return
.
3. If f
raises an exception, it escapes with_return
.
Here is a typical example:
let find l ~f =
with_return (fun r ->
List.iter l ~f:(fun x -> if f x then r.return (Some x));
None
)
It is only because of a deficiency of ML types that with_return
doesn't have type:
val with_return : 'a. (('a -> ('b. 'b)) -> 'a) -> 'a
but we can slightly increase the scope of 'b, without changing the meaning of the type and then we get
type 'a return = { return : 'b . 'a -> 'b }
val with_return : ('a return -> 'a) -> 'a
But the actual reason we chose to use a record type with polymorphic field is that
otherwise we would have to clobber the namespace of functions with return
and that is
undesirable because return
would get hidden as soon as we open any monad. We
considered names different than return
but everything seemed worse than just having
return
as a record field. We are clobbering the namespace of record fields but that
is much more acceptable.
We disable ==
and !=
and replace them with the longer and more mnemonic
phys_equal
because they too easily lead to mistakes (for example they don't even
work right on Int64 or Float). One can usually use the equal
function for a
specific type, or use (=) or (<>) for built in types like char, int, float,
phys_same
is like phys_equal
, but with a more general type. phys_same
is useful
when dealing with existential types, when one has a packed value and an unpacked value
that one wants to check are physically equal. One can't use phys_equal
in such a
situation because the types are different.
See module : Staged
for documentation
Raised if malloc in C bindings fail (errno * size).
The following section contains definitions that hide operations from the standard
library that are considered problematic or confusing, or simply redundant.
we have our own version of these two, the INRIA version doesn't release the runtime
lock.