module Spec:sig..end
type 'a param
val const : 'a -> 'a paramval map : 'a param -> f:('a -> 'b) -> 'b paramval help : string Lazy.t paramval path : string list paramval args : string list paramtype ('main_in, 'main_out) t
Ultimately one forms a base command by combining a spec of type ('main, unit) t
with a main function of type 'main; see the basic function below. Combinators
in this library incrementally build up the type of main according to what
command-line parameters it expects, so the resulting type of main is something
like:
arg1 -> ... -> argN -> unit
It may help to think of ('a, 'b) t as a function space 'a -> 'b embellished with
information about:
One can view a value of type ('main_in, 'main_out) t as function that transforms a
main function from type 'main_in to 'main_out, typically by supplying some
arguments. E.g. a value of type Spec.t might have type:
(arg1 -> ... -> argN -> 'r, 'r) Spec.t
Such a value can transform a main function of type arg1 -> ... -> argN -> 'r by
supplying it argument values of type arg1, ..., argn, leaving a main function
whose type is 'r. In the end, Command.basic takes a completed spec where 'r =
unit, and hence whose type looks like:
(arg1 -> ... -> argN -> unit, unit) Spec.t
A value of this type can fully apply a main function of type arg1 -> ... -> argN
-> unit to all its arguments.
The view of ('main_in, main_out) Spec.t as a function from 'main_in to
'main_out is directly reflected by the step function, whose type is:
val step : ('m1 -> 'm2) -> ('m1, 'm2) t
spec1 ++ spec2 ++ ... ++ specN composes spec1 through specN.
For example, if spec_a and spec_b have types:
spec_a: (a1 -> ... -> aN -> 'ra, 'ra) Spec.t
spec_b: (b1 -> ... -> bM -> 'rb, 'rb) Spec.t
then spec_a ++ spec_b has the following type:
(a1 -> ... -> aN -> b1 -> ... -> bM -> 'rb, 'rb) Spec.t
So, spec_a ++ spec_b transforms a main function it by first supplying spec_a's
arguments of type a1, ..., aN, and then supplying spec_b's arguments of type
b1, ..., bm.
One can understand ++ as function composition by thinking of the type of specs
as concrete function types, representing the transformation of a main function:
spec_a: \/ra. (a1 -> ... -> aN -> 'ra) -> 'ra
spec_b: \/rb. (b1 -> ... -> bM -> 'rb) -> 'rb
Under this interpretation, the composition of spec_a and spec_b has type:
spec_a ++ spec_b : \/rc. (a1 -> ... -> aN -> b1 -> ... -> bM -> 'rc) -> 'rc
And the implementation is just function composition:
sa ++ sb = fun main -> sb (sa main)
val empty : ('m, 'm) tval (++) : ('m1, 'm2) t ->
('m2, 'm3) t -> ('m1, 'm3) tval (+>) : ('m1, 'a -> 'm2) t ->
'a param -> ('m1, 'm2) tval (+<) : ('m1, 'm2) t ->
'a param -> ('a -> 'm1, 'm2) t
this function should only be used as a workaround in situations where the
order of composition is at odds with the order of anonymous arguments due
to factoring out some common spec
val step : ('m1 -> 'm2) -> ('m1, 'm2) tHere are a couple examples of some of its many uses
step (fun m v -> m ~foo:v)
+> flag "-foo" no_arg : (foo:bool -> 'm, 'm) tstep (fun m user -> match user with
| Some user -> m user
| None -> print_string "enter username: "; m (read_line ()))
+> flag "-user" (optional string) ~doc:"USER to frobnicate"
: (string -> 'm, 'm) t
A use of step might look something like:
step (fun main -> let ... in main x1 ... xN) : (arg1 -> ... -> argN -> 'r, 'r) t
Thus, step allows one to write arbitrary code to decide how to transform a main
function. As a simple example:
step (fun main -> main 13.) : (float -> 'r, 'r) t
This spec is identical to const 13.; it transforms a main function by supplying
it with a single float argument, 13.. As another example:
step (fun m v -> m ~foo:v) : (foo:'foo -> 'r, 'foo -> 'r) t
This spec transforms a main function that requires a labeled argument into
a main function that requires the argument unlabeled, making it easily composable
with other spec combinators.
val wrap : (run:('m1 -> 'r1) -> main:'m2 -> 'r2) ->
('m1, 'r1) t -> ('m2, 'r2) t
Here are two examples of command classes defined using wrap
wrap (fun ~run ~main ->
Exn.handle_uncaught ~exit:true (fun () -> run main)
) : ('m, unit) t -> ('m, unit) t
wrap (fun ~run ~main ->
In_channel.iter_lines stdin ~f:(fun line -> run (main line))
) : ('m, unit) t -> (string -> 'm, unit) t
module Arg_type:sig..end
val string : string Arg_type.tval int : int Arg_type.tval float : float Arg_type.tval bool : bool Arg_type.tval date : Date.t Arg_type.tval time_span : Span.t Arg_type.tval file : string Arg_type.ttype 'a flag
val flag : ?aliases:string list ->
string -> 'a flag -> doc:string -> 'a paramflag name spec ~doc specifies a command that, among other things, takes a flag
named name on its command line. doc indicates the meaning of the flag.
NOTE: the doc for a flag which takes an argument should be of the form arg_name ^
" " ^ description where arg_name describes the argument and description
describes the meaning of the flag.
NOTE: flag names (including aliases) containing underscores will
be rejected. Use dashes instead.
val required : 'a Arg_type.t -> 'a flagval optional : 'a Arg_type.t -> 'a option flagval optional_with_default : 'a -> 'a Arg_type.t -> 'a flagoptional_with_default flags may be passed at most once, and
default to a given valueval listed : 'a Arg_type.t -> 'a list flaglisted flags may be passed zero or more timesval no_arg : bool flagno_arg flags may be passed at most once. The boolean returned
is true iff the flag is passed on the command lineval no_arg_register : key:'a Univ_map.With_default.Key.t -> value:'a -> bool flagno_arg_register ~key ~value is like no_arg, but associates value
with key in the in the auto-completion environmentval no_arg_abort : exit:(unit -> Std_internal.never_returns) -> unit flagno_arg_abort ~exit is like no_arg, but aborts command-line parsing
by calling exit. This flag type is useful for "help"-style flags that
just print something and exit.val escape : string list option flagescape flags may be passed at most once. They cause the command
line parser to abort and pass through all remaining command line
arguments as the value of the flag.val flags_of_args_exn : Arg.t list -> ('a, 'a) tflags_of_args_exn args creates a spec from Arg.ts, for compatibility with
ocaml's base libraries. Fails if it encounters an arg that cannot be converted.
NOTE: There is a difference in side effect ordering between Arg and Command. In
the Arg module, flag handling functions embedded in Arg.t values will be run in
the order that flags are passed on the command line. In the Command module, using
flags_of_args_exn flags, they are evaluated in the order that the Arg.t values
appear in flags.
type 'a anons
val anon : 'a anons -> 'a paramanon spec specifies a command that, among other things, takes
the anonymous arguments specified by spec.val (%:) : string -> 'a Arg_type.t -> 'a anons(name %: typ) specifies a required anonymous argument of type typ.
The name is mentioned in the generated help for the command.val sequence : 'a anons -> 'a list anonssequence anons specifies a sequence of anonymous arguments. An exception
will be raised if anons matches anything other than a fixed number of
anonymous argumentsval maybe : 'a anons -> 'a option anons(maybe anons) indicates that some anonymous arguments are optionalval maybe_with_default : 'a -> 'a anons -> 'a anons(maybe_with_default default anons) indicates an optional anonymous
argument with a default valuet2, t3, and t4 each concatenate multiple anonymous argument
specs into a single one. The purpose of these combinators is to allow
for optional sequences of anonymous arguments. Consider a command with
usage:
main.exe FOO [BAR BAZ]
where the second and third anonymous arguments must either both be there or both not be there. This can be expressed as:
t2 ("FOO" %: foo) (maybe (t2 ("BAR" %: bar) ("BAZ" %: baz)))]
Sequences of 5 or more anonymous arguments can be built up using nested tuples:
maybe (t3 a b (t3 c d e))
val t2 : 'a anons ->
'b anons -> ('a * 'b) anonsval t3 : 'a anons ->
'b anons ->
'c anons -> ('a * 'b * 'c) anonsval t4 : 'a anons ->
'b anons ->
'c anons ->
'd anons -> ('a * 'b * 'c * 'd) anons