Module Blang

module Blang: Blang


Blang provides infrastructure for writing simple boolean DSLs. All expressions in a Blang language evaluate to a bool. The language is parameterized over another language of base propositions.

The syntax is almost exactly the obvious s-expression syntax, except that:

1. Base elements are not marked explicitly. Thus, if your base language has elements FOO, BAR, etc., then you could write the following Blang s-expressions:

          FOO
          (and FOO BAR)
          (if FOO BAR BAZ)
      

and so on. Note that this gets in the way of using the blang "keywords" in your value language.

2. And and Or take a variable number of arguments, so that one can (and probably should) write

(and FOO BAR BAZ QUX)

instead of

(and FOO (and BAR (and BAZ QUX)))

type 'a t = private 
| True
| False
| And of 'a t * 'a t
| Or of 'a t * 'a t
| Not of 'a t
| If of 'a t * 'a t * 'a t
| Base of 'a (*Note that the sexps are not directly inferred from the type above -- there are lots of fancy shortcuts. Also, the sexps for 'a must not look anything like blang sexps. Otherwise t_of_sexp will fail.*)
val base : 'a -> 'a t
val true_ : 'a t
val false_ : 'a t
val constant : bool -> 'a t
val not_ : 'a t -> 'a t
val and_ : 'a t list -> 'a t
val or_ : 'a t list -> 'a t
val if_ : 'a t -> 'a t -> 'a t -> 'a t
val constant_value : 'a t -> bool option

The following two functions are useful when one wants to pretend that 'a t has constructors And and Or of type 'a t list -> 'a t. The pattern of use is

match t with | ... | And (_, _) as t -> let ts = gather_conjuncts t in ... | Or (_, _) as t -> let ts = gather_disjuncts t in ... | ...

or, in case you also want to handle True (resp. False) as a special case of conjunction (disjunction)

match t with | ... | True | And (_, _) as t -> let ts = gather_conjuncts t in ... | False | Or (_, _) as t -> let ts = gather_disjuncts t in ... | ...

val gather_conjuncts : 'a t -> 'a t list
gather_conjuncts t gathers up all toplevel conjuncts in t. For example,
val gather_disjuncts : 'a t -> 'a t list
gather_disjuncts t gathers up all toplevel disjuncts in t. For example,
include Container.S1
include Monad
Blang.t sports a substitution monad:
val values : 'a t -> 'a list
values t forms the list containing every v for which Base v is a subexpression of t
val eval : 'a t -> ('a -> bool) -> bool
eval t f evaluates the proposition t relative to an environment f that assigns truth values to base propositions.
val specialize : 'a t -> ('a -> [ `Known of bool | `Unknown ]) -> 'a t
specialize t f partially evaluates t according to a perhaps-incomplete assignment f of the values of base propositions. The following laws (at least partially) characterize its behavior.

* specialize t (fun _ -> `Unknown) = t

* specialize t (fun x -> `Known (f x)) = constant (eval t f)

* List.forall (values (specialize t g)) ~f:(fun x -> g x = `Unknown)

* if List.forall (values t) ~f:(fun x -> match g x with | `Known b -> b = f x | `Unknown -> true) then eval t f = eval (specialize t g) f

val invariant : 'a t -> unit
module Stable: sig .. end
val t_of_sexp : (Sexplib.Sexp.t -> 'a) -> Sexplib.Sexp.t -> 'a t
val sexp_of_t : ('a -> Sexplib.Sexp.t) -> 'a t -> Sexplib.Sexp.t
val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int
val bin_t : 'a Bin_prot.Type_class.t -> 'a t Bin_prot.Type_class.t
val bin_read_t : 'a Bin_prot.Unsafe_read_c.reader -> 'a t Bin_prot.Read_ml.reader
val bin_read_t_ : 'a Bin_prot.Unsafe_read_c.reader -> 'a t Bin_prot.Unsafe_read_c.reader
val bin_read_t__ : 'a Bin_prot.Unsafe_read_c.reader ->
(int -> 'a t) Bin_prot.Unsafe_read_c.reader
val bin_reader_t : 'a Bin_prot.Type_class.reader -> 'a t Bin_prot.Type_class.reader
val bin_size_t : 'a Bin_prot.Size.sizer -> 'a t Bin_prot.Size.sizer
val bin_write_t : 'a Bin_prot.Unsafe_write_c.writer -> 'a t Bin_prot.Write_ml.writer
val bin_write_t_ : 'a Bin_prot.Unsafe_write_c.writer ->
'a t Bin_prot.Unsafe_write_c.writer
val bin_writer_t : 'a Bin_prot.Type_class.writer -> 'a t Bin_prot.Type_class.writer