module type Accessors =sig..end
include Container.Generic_phantom
type ('a, 'comparator) tree 
type ('a, 'comparator, 'z) options 
val invariants : ('a, 'comparator, ('a, 'comparator) t -> bool)
       optionsval mem : ('a, 'comparator, ('a, 'comparator) t -> 'a elt -> bool)
       optionsval add : ('a, 'comparator, ('a, 'comparator) t -> 'a elt -> ('a, 'comparator) t)
       optionsval remove : ('a, 'comparator, ('a, 'comparator) t -> 'a elt -> ('a, 'comparator) t)
       optionsval union : ('a, 'comparator,
        ('a, 'comparator) t -> ('a, 'comparator) t -> ('a, 'comparator) t)
       optionsval inter : ('a, 'comparator,
        ('a, 'comparator) t -> ('a, 'comparator) t -> ('a, 'comparator) t)
       optionsval diff : ('a, 'comparator,
        ('a, 'comparator) t -> ('a, 'comparator) t -> ('a, 'comparator) t)
       optionsval compare_direct : ('a, 'comparator, ('a, 'comparator) t -> ('a, 'comparator) t -> int)
       optionsval equal : ('a, 'comparator, ('a, 'comparator) t -> ('a, 'comparator) t -> bool)
       optionssubset t1 t2 returns true iff t1 is a subset of t2.val subset : ('a, 'comparator, ('a, 'comparator) t -> ('a, 'comparator) t -> bool)
       optionsval fold_until : ('a, 'c) t ->
       init:'b -> f:('b -> 'a elt -> [ `Continue of 'b | `Stop of 'b ]) -> 'bval fold_right : ('a, 'c) t -> init:'b -> f:('a elt -> 'b -> 'b) -> 'bval iter2 : ('a, 'comparator,
        ('a, 'comparator) t ->
        ('a, 'comparator) t ->
        f:([ `Both of 'a elt * 'a elt | `Left of 'a elt | `Right of 'a elt ] -> unit) ->
        unit)
       optionsval filter : ('a, 'comparator,
        ('a, 'comparator) t -> f:('a elt -> bool) -> ('a, 'comparator) t)
       optionsres = partition_tf set ~f then fst res are the elements on which f
      produced true, and snd res are the elements on which f produces falseval partition_tf : ('a, 'comparator,
        ('a, 'comparator) t ->
        f:('a elt -> bool) -> ('a, 'comparator) t * ('a, 'comparator) t)
       optionsval elements : ('a, 'b) t -> 'a elt listval min_elt : ('a, 'b) t -> 'a elt optionval min_elt_exn : ('a, 'b) t -> 'a eltval max_elt : ('a, 'b) t -> 'a elt optionval max_elt_exn : ('a, 'b) t -> 'a eltval choose : ('a, 'b) t -> 'a elt optionval choose_exn : ('a, 'b) t -> 'a eltval split : ('a, 'comparator,
        ('a, 'comparator) t ->
        'a elt -> ('a, 'comparator) t * bool * ('a, 'comparator) t)
       optionssplit x set produces a triple triple where fst3 triple is the set of elements
      strictly less than x, snd3 triple = mem set x, and trd3 triple is the set of
      elements strictly larger than x.val group_by : ('a, 'comparator,
        ('a, 'comparator) t ->
        equiv:('a elt -> 'a elt -> bool) -> ('a, 'comparator) t list)
       optionsequiv is an equivalence predicate, then group_by set ~equiv produces a list
      of equivalence classes (i.e., a set-theoretic quotient).  E.g.,
      let chars = Set.of_list ['A'; 'a'; 'b'; 'c'] in
      let equiv c c' = Char.equal (Char.uppercase c) (Char.uppercase c') in
      group_by chars ~equiv
produces
      Set.of_list['A';'a']; Set.singleton 'b'; Set.singleton 'c'
      Runs in O(n^2) time.
val find_exn : ('a, 'b) t -> f:('a elt -> bool) -> 'a eltfind_index t i returns the ith smallest element of t in O(log n) time.  The
      smallest element has i = 0.val find_index : ('a, 'b) t -> int -> 'a elt optionval remove_index : ('a, 'comparator, ('a, 'comparator) t -> int -> ('a, 'comparator) t)
       optionsval to_tree : ('a, 'comparator) t -> ('a elt, 'comparator) tree