module type Gen = sig .. end
type 'a t 
type 'a bound 
Module for simple closed intervals over arbitrary types that are ordered correctly
      using polymorphic compare.
val create : 'a bound ->
       'a bound -> 'a t
val empty : 'a t
val intersect : 'a t -> 'a t -> 'a t
val is_empty : 'a t -> bool
val is_empty_or_singleton : 'a t -> bool
val bounds : 'a t ->
       ('a bound * 'a bound) option
val lbound : 'a t -> 'a bound option
val ubound : 'a t -> 'a bound option
val bounds_exn : 'a t ->
       'a bound * 'a bound
val lbound_exn : 'a t -> 'a bound
val ubound_exn : 'a t -> 'a bound
val contains : 'a t -> 'a bound -> bool
val compare_value : 'a t ->
       'a bound ->
       [ `Above | `Below | `Interval_is_empty | `Within ]
val bound : 'a t ->
       'a bound -> 'a bound option
bound i x bounds the value x to the interval i.  It returns None if the
      interval is empty and Some x' otherwise, where x' is the bounded value.
val is_superset : 'a t -> of_:'a t -> bool
is_superset i1 of_:i2 is whether i1 contains i2.  The empty interval is
      contained in every interval.
val is_subset : 'a t -> of_:'a t -> bool
val map : f:('a bound -> 'b bound) ->
       'a t -> 'b t
val are_disjoint : 'a t list -> bool
Returns true iff a given set of intervals are disjoint
val are_disjoint_as_open_intervals : 'a t list -> bool
Returns true iff a given set of intervals would be disjoint if considered as open
      intervals.  i.e.,  (3,4) and (4,5) would count as disjoint.
val list_intersect : 'a t list ->
       'a t list -> 'a t list
Assuming that ilist1 and ilist2 are lists of (disjoint) intervals,
      list_intersect ilist1 ilist2 returns the list of disjoint intervals that correspond
      to the intersection of ilist1 with ilist2.
val half_open_intervals_are_a_partition : 'a t list -> bool