This module defines the Set module for Core. Functions that construct a set take
as an argument the comparator for the element type.
This module uses the same organizational approach as Map.
The type of a set. The first type parameter identifies the type of the element, and the second identifies the comparator, which determines the comparison function that is used for ordering elements in this set. Many operations (e.g., union), require that they be passed sets with the same element type and the same comparator type.
include sig ... endval compare : ('elt ‑> 'elt ‑> Core_kernel__.Import.int) ‑> ('cmp ‑> 'cmp ‑> Core_kernel__.Import.int) ‑> ('elt, 'cmp) t ‑> ('elt, 'cmp) t ‑> Core_kernel__.Import.inttype ('k, 'cmp) comparator = (module Core_kernel.Comparator.S with type comparator_witness = 'cmp and type t = 'k)module Tree : sig ... endmodule Using_comparator : sig ... endval invariants : (_, _) t ‑> Core_kernel__.Import.boolTests internal invariants of the set data structure. Returns true on success.
val comparator : ('a, 'cmp) t ‑> ('a, 'cmp) Core_kernel.Comparator.tval empty : ('a, 'cmp) comparator ‑> ('a, 'cmp) tCreates an empty set based on the provided comparator.
val singleton : ('a, 'cmp) comparator ‑> 'a ‑> ('a, 'cmp) tCreates a set based on the provided comparator that contains only the provided element.
val union_list : ('a, 'cmp) comparator ‑> ('a, 'cmp) t Core_kernel__.Import.list ‑> ('a, 'cmp) tunion c list returns the union of all the sets in list. The c argument is
required for the case where list is empty. O(max(List.length list, n log n)),
where n is the sum of sizes of the input sets.
diff t1 t2 computes the set difference t1 - t2, i.e., the set containing all
elements in t1 that are not in t2. O(length t1 + length t2).
val symmetric_diff : ('a, 'cmp) t ‑> ('a, 'cmp) t ‑> ('a, 'a) Core_kernel.Either.t Core_kernel.Sequence.tsymmetric_diff t1 t2 returns a sequence of changes between t1 and t2. It is
intended to be efficient in the case where t1 and t2 share a large amount of
structure.
val compare_direct : ('a, 'cmp) t ‑> ('a, 'cmp) t ‑> Core_kernel__.Import.intcompare_direct t1 t2 compares the sets t1 and t2. It returns the same result
as compare, but unlike compare, doesn't require arguments to be passed in for the
type parameters of the set. O(length t1 + length t2).
val hash_fold_direct : 'a Core_kernel__.Import.Hash.folder ‑> ('a, 'cmp) t Core_kernel__.Import.Hash.folderHash function: a building block to use when hashing data structures containing sets in
them. hash_fold_direct hash_fold_key is compatible with compare_direct iff
hash_fold_key is compatible with (comparator s).compare of the set s being
hashed.
val equal : ('a, 'cmp) t ‑> ('a, 'cmp) t ‑> Core_kernel__.Import.boolequal t1 t2 returns true iff the two sets have the same elements. O(length t1 +
length t2)
val exists : ('a, _) t ‑> f:('a ‑> Core_kernel__.Import.bool) ‑> Core_kernel__.Import.boolexists t ~f returns true iff there exists an a in t for which f a. O(n),
but returns as soon as it finds an a for which f a.
val for_all : ('a, _) t ‑> f:('a ‑> Core_kernel__.Import.bool) ‑> Core_kernel__.Import.boolfor_all t ~f returns true iff for all a in t, f a. O(n), but returns as
soon as it finds an a for which not (f a).
val count : ('a, _) t ‑> f:('a ‑> Core_kernel__.Import.bool) ‑> Core_kernel__.Import.intcount t returns the number of elements of t for which f returns true.
O(n).
val sum : (module Core_kernel__.Import.Commutative_group.S with type t = 'sum) ‑> ('a, _) t ‑> f:('a ‑> 'sum) ‑> 'sumsum t returns the sum of f t for each t in the set.
O(n).
val find : ('a, _) t ‑> f:('a ‑> Core_kernel__.Import.bool) ‑> 'a Core_kernel__.Import.optionfind t f returns an element of t for which f returns true, with no guarantee as
to which element is returned. O(n), but returns as soon as a suitable element is
found.
val find_map : ('a, _) t ‑> f:('a ‑> 'b Core_kernel__.Import.option) ‑> 'b Core_kernel__.Import.optionfind_map t f returns b for some a in t for which f a = Some b. If no such
a exists, then find returns None. O(n), but returns as soon as a suitable
element is found.
val find_exn : ('a, _) t ‑> f:('a ‑> Core_kernel__.Import.bool) ‑> 'aLike find, but throws an exception on failure.
val nth : ('a, _) t ‑> Core_kernel__.Import.int ‑> 'a Core_kernel__.Import.optionnth t i returns the ith smallest element of t, in O(log n) time. The
smallest element has i = 0. Returns None if i < 0 or i >= length t.
val find_index : ('a, _) t ‑> Core_kernel__.Import.int ‑> 'a Core_kernel__.Import.optionval remove_index : ('a, 'cmp) t ‑> Core_kernel__.Import.int ‑> ('a, 'cmp) tremove_index t i returns a version of t with the ith smallest element removed,
in O(log n) time. The smallest element has i = 0. Returns t if i < 0 or
i >= length t.
val is_subset : ('a, 'cmp) t ‑> of_:('a, 'cmp) t ‑> Core_kernel__.Import.boolis_subset t1 ~of_:t2 returns true iff t1 is a subset of t2.
val subset : ('a, 'cmp) t ‑> ('a, 'cmp) t ‑> Core_kernel__.Import.boolsubset is a synonym for is_subset.
module Named : sig ... endNamed allows the validation of subset and equality relationships between sets. A
Named.t is a record of a set and a name, where the name is used in error messages,
and Named.is_subset and Named.equal validate subset and equality relationships
respectively.
val of_list : ('a, 'cmp) comparator ‑> 'a Core_kernel__.Import.list ‑> ('a, 'cmp) tThe list or array given to of_list and of_array need not be sorted.
val of_array : ('a, 'cmp) comparator ‑> 'a Core_kernel__.Import.array ‑> ('a, 'cmp) tval of_hash_set : ('a, 'cmp) comparator ‑> 'a Core_kernel.Hash_set.t ‑> ('a, 'cmp) tval of_hashtbl_keys : ('a, 'cmp) comparator ‑> ('a, _) Core_kernel.Hashtbl.t ‑> ('a, 'cmp) tval to_list : ('a, _) t ‑> 'a Core_kernel__.Import.listto_list and to_array produce sequences sorted in ascending order according to the
comparator.
val to_array : ('a, _) t ‑> 'a Core_kernel__.Import.arrayval of_tree : ('a, 'cmp) comparator ‑> ('a, 'cmp) Tree.t ‑> ('a, 'cmp) tval of_sorted_array : ('a, 'cmp) comparator ‑> 'a Core_kernel__.Import.array ‑> ('a, 'cmp) t Core_kernel.Or_error.tCreate set from sorted array. The input must be sorted (either in ascending or
descending order as given by the comparator) and contain no duplicates, otherwise the
result is an error. The complexity of this function is O(n).
val of_sorted_array_unchecked : ('a, 'cmp) comparator ‑> 'a Core_kernel__.Import.array ‑> ('a, 'cmp) tSimilar to of_sorted_array, but without checking the input array.
val of_increasing_iterator_unchecked : ('a, 'cmp) comparator ‑> len:Core_kernel__.Import.int ‑> f:(Core_kernel__.Import.int ‑> 'a) ‑> ('a, 'cmp) tof_increasing_iterator_unchecked c ~len ~f behaves like
of_sorted_array_unchecked c (Array.init len ~f), with the additional
restriction that a decreasing order is not supported. The advantage is not requiring
you to allocate an intermediate array. f will be called with 0, 1, ... len - 1,
in order.
val stable_dedup_list : ('a, _) comparator ‑> 'a Core_kernel__.Import.list ‑> 'a Core_kernel__.Import.liststable_dedup_list is here rather than in the List module because the
implementation relies crucially on sets, and because doing so allows one to avoid uses
of polymorphic comparison by instantiating the functor at a different implementation
of Comparator and using the resulting stable_dedup_list.
val map : ('b, 'cmp) comparator ‑> ('a, _) t ‑> f:('a ‑> 'b) ‑> ('b, 'cmp) tmap c t ~f returns a new set created by applying f to every element in t. The
returned set is based on the provided c. O(n log n).
val filter_map : ('b, 'cmp) comparator ‑> ('a, _) t ‑> f:('a ‑> 'b Core_kernel__.Import.option) ‑> ('b, 'cmp) tLike map, except elements for which f returns None will be dropped.
val filter : ('a, 'cmp) t ‑> f:('a ‑> Core_kernel__.Import.bool) ‑> ('a, 'cmp) tfilter t ~f returns the subset of t for which f evaluates to true. O(n log
n).
val fold : ('a, _) t ‑> init:'accum ‑> f:('accum ‑> 'a ‑> 'accum) ‑> 'accumfold t ~init ~f folds over the elements of the set from smallest to largest.
val fold_result : ('a, _) t ‑> init:'accum ‑> f:('accum ‑> 'a ‑> ('accum, 'e) Core_kernel.Result.t) ‑> ('accum, 'e) Core_kernel.Result.tfold_result ~init ~f folds over the elements of the set from smallest to
largest, short circuiting the fold if f accum x is an Error _
val fold_until : ('a, _) t ‑> init:'accum ‑> f:('accum ‑> 'a ‑> ('accum, 'final) Core_kernel.Set_intf.Continue_or_stop.t) ‑> finish:('accum ‑> 'final) ‑> 'finalfold_until t ~init ~f is a short-circuiting version of fold. If f
returns Stop _ the computation ceases and results in that value. If f returns
Continue _, the fold will proceed.
val fold_right : ('a, _) t ‑> init:'accum ‑> f:('a ‑> 'accum ‑> 'accum) ‑> 'accumLike fold, except that it goes from the largest to the smallest element.
val iter : ('a, _) t ‑> f:('a ‑> Core_kernel__.Import.unit) ‑> Core_kernel__.Import.unititer t ~f calls f on every element of t, going in order from the smallest to
largest.
val iter2 : ('a, 'cmp) t ‑> ('a, 'cmp) t ‑> f:([ `Left of 'a | `Right of 'a | `Both of 'a * 'a ] ‑> Core_kernel__.Import.unit) ‑> Core_kernel__.Import.unitIterate two sets side by side. Complexity is O(m+n) where m and n are the sizes
of the two input sets. As an example, with the inputs 0; 1 and 1; 2, f will be
called with `Left 0; `Both (1, 1); and `Right 2.
val partition_tf : ('a, 'cmp) t ‑> f:('a ‑> Core_kernel__.Import.bool) ‑> ('a, 'cmp) t * ('a, 'cmp) tIf a, b = partition_tf set ~f then a is the elements on which f produced true,
and b is the elements on which f produces false.
val min_elt : ('a, _) t ‑> 'a Core_kernel__.Import.optionReturns the smallest element of the set. O(log n).
val max_elt : ('a, _) t ‑> 'a Core_kernel__.Import.optionReturns the largest element of the set. O(log n).
val choose : ('a, _) t ‑> 'a Core_kernel__.Import.optionreturns an arbitrary element, or None if the set is empty.
val split : ('a, 'cmp) t ‑> 'a ‑> ('a, 'cmp) t * 'a Core_kernel__.Import.option * ('a, 'cmp) tsplit t x produces a triple (t1, maybe_x, t2) where t1 is the set of elements
strictly less than x, maybe_x is the member (if any) of t which compares equal
to x, and t2 is the set of elements strictly larger than x.
val group_by : ('a, 'cmp) t ‑> equiv:('a ‑> 'a ‑> Core_kernel__.Import.bool) ‑> ('a, 'cmp) t Core_kernel__.Import.listIf equiv is an equivalence predicate, then group_by set ~equiv produces a list
of equivalence classes (i.e., a set-theoretic quotient). E.g.,
let chars = Set.of_list ['A'; 'a'; 'b'; 'c'] in
let equiv c c' = Char.equal (Char.uppercase c) (Char.uppercase c') in
group_by chars ~equivproduces:
[Set.of_list ['A';'a']; Set.singleton 'b'; Set.singleton 'c']group_by runs in O(n^2) time, so if you have a comparison function, it's usually
much faster to use Set.of_list.
val to_sequence : ?order:[ `Increasing | `Decreasing ] ‑> ?greater_or_equal_to:'a ‑> ?less_or_equal_to:'a ‑> ('a, 'cmp) t ‑> 'a Core_kernel.Sequence.tto_sequence t converts the set t to a sequence of the elements between
greater_or_equal_to and less_or_equal_to inclusive in the order indicated by
order. If greater_or_equal_to > less_or_equal_to the sequence is empty. Cost is
O(log n) up front and amortized O(1) for each element produced.
module Merge_to_sequence_element : sig ... endProduces the elements of the two sets between greater_or_equal_to and
less_or_equal_to in order, noting whether each element appears in the left set,
the right set, or both. In the both case, both elements are returned, in case the
caller can distinguish between elements that are equal to the sets' comparator. Runs
in O(length t + length t').
val merge_to_sequence : ?order:[ `Increasing | `Decreasing ] ‑> ?greater_or_equal_to:'a ‑> ?less_or_equal_to:'a ‑> ('a, 'cmp) t ‑> ('a, 'cmp) t ‑> ('a, 'a) Merge_to_sequence_element.t Core_kernel.Sequence.tval to_map : ('key, 'cmp) t ‑> f:('key ‑> 'data) ‑> ('key, 'data, 'cmp) Core_kernel.Map.tConvert a set to or from a map. to_map takes a function to produce data for each
key. Both functions run in O(n) time (assuming the function passed to to_map runs
in constant time).
val of_map_keys : ('key, _, 'cmp) Core_kernel.Map.t ‑> ('key, 'cmp) tval gen : ('key, 'cmp) comparator ‑> 'key Core_kernel.Quickcheck.Generator.t ‑> ('key, 'cmp) t Core_kernel.Quickcheck.Generator.tval obs : 'key Core_kernel.Quickcheck.Observer.t ‑> ('key, 'cmp) t Core_kernel.Quickcheck.Observer.tval shrinker : 'key Core_kernel.Quickcheck.Shrinker.t ‑> ('key, 'cmp) t Core_kernel.Quickcheck.Shrinker.tModule Poly deals with sets that use OCaml's polymorphic comparison to compare elements.
Set modulesmodule type Elt_plain = Core_kernel.Set_intf.Elt_plainmodule type Elt = Core_kernel.Set_intf.EltThe signature that something needs to match in order to be used as a set element.
module type Elt_binable = Core_kernel.Set_intf.Elt_binableThe signature that something needs to match in order to be used as a set element if
the resulting set is going to support bin_io.
module type S_plain = Core_kernel.Set_intf.S_plainModule signature for a Set that doesn't support of_sexp.
module type S_binable = Core_kernel.Set_intf.S_binableModule signature for a Set that supports bin_io.
Make builds a set from an element type that has a compare function but doesn't
have a comparator. This generates a new comparator.
module Make_binable : functor (Elt : Elt_binable) -> S_binable with type Elt.t = Elt.tmodule Make_plain_using_comparator : functor (Elt : sig ... end) -> S_plain with type Elt.t = Elt.t with type Elt.comparator_witness = Elt.comparator_witnessmodule Make_using_comparator : functor (Elt : sig ... end) -> S with type Elt.t = Elt.t with type Elt.comparator_witness = Elt.comparator_witnessMake_using_comparator builds a set from an element type that has a comparator.
module Make_binable_using_comparator : functor (Elt : sig ... end) -> S_binable with type Elt.t = Elt.t with type Elt.comparator_witness = Elt.comparator_witness