include Core.Unix
This file is a modified version of unixLabels.mli from the OCaml distribution.
type error
= Unix.error
=
val sexp_of_error : Unix.error ‑> Core__.Import.Sexp.t
val error_of_sexp : Core__.Import.Sexp.t ‑> Unix.error
module Error = Core__.Core_unix.Error
exception
Unix_error of Error.t * string * string
Raised by the system calls below when an error is encountered. The first component is the error code; the second component is the function name; the third component is the string parameter to the function, if it has one, or the empty string otherwise.
module Syscall_result = Core__.Core_unix.Syscall_result
external unix_error : int ‑> string ‑> string ‑> _ = "unix_error_stub"
val handle_unix_error : (unit ‑> 'a) ‑> 'a
handle_unix_error f
runs f ()
and returns the result. If the exception
Unix_error
is raised, it prints a message describing the error and exits with code
2.
val retry_until_no_eintr : (unit ‑> 'a) ‑> 'a
retry_until_no_eintr f
returns f ()
unless f ()
fails with EINTR
; in which
case f ()
is run again until it raises a different error or returns a value.
If you're looking for getenv
, that's in the Sys module.
val environment : unit ‑> string array
Return the process environment, as an array of strings with the format ``variable=value''.
val putenv : key:string ‑> data:string ‑> unit
Unix.putenv ~key ~data
sets the value associated to a
variable in the process environment.
key
is the name of the environment variable,
and data
its new associated value.
val unsetenv : string ‑> unit
unsetenv name
deletes the variable name
from the environment.
EINVAL name
contained an ’=’ or an '\000' character.
module Exit_or_signal = Core__.Core_unix.Exit_or_signal
module Exit_or_signal_or_stop = Core__.Core_unix.Exit_or_signal_or_stop
type env
= [
| `Replace of (string * string) list |
| `Extend of (string * string) list |
| `Replace_raw of string list |
]
env
is used to control the environment of a child process, and can take three forms.
`Replace_raw
replaces the entire environment with strings in the Unix style, like
"VARIABLE_NAME=value"
. `Replace
has the same effect as `Replace_raw
, but using
bindings represented as "VARIABLE_NAME", "value"
. `Extend
adds entries to the
existing environment rather than replacing the whole environment.
If env
contains multiple bindings for the same variable, the last takes precedence.
In the case of `Extend
, bindings in env
take precedence over the existing
environment.
include sig ... end
val env_of_sexp : Base.Sexp.t ‑> env
val __env_of_sexp__ : Base.Sexp.t ‑> env
val sexp_of_env : env ‑> Base.Sexp.t
val exec : prog:string ‑> argv:string list ‑> ?use_path:bool ‑> ?env:env ‑> unit ‑> Core__.Import.never_returns
exec ~prog ~argv ?search_path ?env
execs prog
with argv
. If use_path = true
(the default) and prog
doesn't contain a slash, then exec
searches the PATH
environment variable for prog
. If env
is supplied, it determines the environment
when prog
is executed.
The first element in argv
should be the program itself; the correct way to call
exec
is:
exec ~prog ~argv:[ prog; arg1; arg2; ...] ()
val fork_exec : prog:string ‑> argv:string list ‑> ?use_path:bool ‑> ?env:env ‑> unit ‑> Core__.Import.Pid.t
fork_exec ~prog ~argv ?use_path ?env ()
forks and execs prog
with argv
in the
child process, returning the child PID to the parent. As in exec
, the first element
in argv
should be the program itself.
val fork : unit ‑> [ `In_the_child | `In_the_parent of Core__.Import.Pid.t ]
fork ()
forks a new process. The return value indicates whether we are continuing
in the child or the parent, and if the parent, includes the child's process id.
wait{,_nohang,_untraced,_nohang_untraced} ?restart wait_on
is a family of functions
that wait on a process to exit (normally or via a signal) or be stopped by a signal
(if untraced
is used). The wait_on
argument specifies which processes to wait on.
The nohang
variants return None
immediately if no such process exists. If
nohang
is not used, waitpid
will block until one of the desired processes exits.
The non-nohang variants have a restart
flag with (default true) that causes the
system call to be retried upon EAGAIN|EINTR. The nohang variants do not have this
flag because they don't block.
include sig ... end
val wait_on_of_sexp : Base.Sexp.t ‑> wait_on
val __wait_on_of_sexp__ : Base.Sexp.t ‑> wait_on
val sexp_of_wait_on : wait_on ‑> Base.Sexp.t
val wait : ?restart:bool ‑> wait_on ‑> Core__.Import.Pid.t * Exit_or_signal.t
val wait_nohang : wait_on ‑> (Core__.Import.Pid.t * Exit_or_signal.t) option
val wait_untraced : ?restart:bool ‑> wait_on ‑> Core__.Import.Pid.t * Exit_or_signal_or_stop.t
val wait_nohang_untraced : wait_on ‑> (Core__.Import.Pid.t * Exit_or_signal_or_stop.t) option
val waitpid : Core__.Import.Pid.t ‑> Exit_or_signal.t
waitpid pid
waits for child process pid
to terminate, and returns its exit status.
waitpid_exn
is like waitpid
, except it only returns if the child exits with status
zero, and raises if the child terminates in any other way.
val waitpid_exn : Core__.Import.Pid.t ‑> unit
val system : string ‑> Exit_or_signal.t
Execute the given command, wait until it terminates, and return
its termination status. The string is interpreted by the shell
/bin/sh
and therefore can contain redirections, quotes, variables,
etc. The result WEXITED 127
indicates that the shell couldn't
be executed.
val getppid_exn : unit ‑> Core__.Import.Pid.t
Return the pid of the parent process, if you're really sure you're never going to be the init process.
module Thread_id = Core__.Core_unix.Thread_id
val gettid : (unit ‑> Thread_id.t) Core__.Import.Or_error.t
Get the numeric ID of the current thread, e.g. for identifying it in top(1).
val nice : int ‑> int
Change the process priority. The integer argument is added to the ``nice'' value. (Higher values of the ``nice'' value mean lower priorities.) Return the new nice value.
The abstract type of file descriptors.
The flags to UnixLabels.openfile.
type open_flag
= Unix.open_flag
=
| O_RDONLY | (** Open for reading *) |
| O_WRONLY | (** Open for writing *) |
| O_RDWR | (** Open for reading and writing *) |
| O_NONBLOCK | (** Open in non-blocking mode *) |
| O_APPEND | (** Open for append *) |
| O_CREAT | (** Create if nonexistent *) |
| O_TRUNC | (** Truncate to 0 length if existing *) |
| O_EXCL | (** Fail if existing *) |
| O_NOCTTY | (** Don't make this dev a controlling tty *) |
| O_DSYNC | (** Writes complete as `Synchronised I/O data integrity completion' *) |
| O_SYNC | (** Writes complete as `Synchronised I/O file integrity completion' *) |
| O_RSYNC | (** Reads complete as writes (depending on O_SYNC/O_DSYNC) *) |
| O_SHARE_DELETE | (** Windows only: allow the file to be deleted while still open *) |
| O_CLOEXEC | (** Set the close-on-exec flag on the descriptor returned by openfile *) |
| O_KEEPEXEC |
val open_flag_of_sexp : Core__.Import.Sexp.t ‑> open_flag
We can't use with sexp
because pa_sexp inserts two copies of the val
specs, which
leads to a spurious "unused" warning.
val sexp_of_open_flag : open_flag ‑> Core__.Import.Sexp.t
include sig ... end
val file_perm_of_sexp : Base.Sexp.t ‑> file_perm
val sexp_of_file_perm : file_perm ‑> Base.Sexp.t
val openfile : ?perm:file_perm ‑> mode:open_flag list ‑> string ‑> File_descr.t
Open the named file with the given flags. Third argument is the permissions to give to the file if it is created. Return a file descriptor on the named file. Default permissions 0o644.
module Open_flags = Core__.Core_unix.Open_flags
val fcntl_getfl : File_descr.t ‑> Open_flags.t
fcntl_getfl fd
gets the current flags for fd
from the open-file-descriptor table
via the system call fcntl(fd, F_GETFL)
. See "man fcntl".
val fcntl_setfl : File_descr.t ‑> Open_flags.t ‑> unit
fcntl_setfl fd flags
sets the flags for fd
in the open-file-descriptor table via
the system call fcntl(fd, F_SETFL, flags)
. See "man fcntl". As per the Linux man
page, on Linux this only allows append
and nonblock
to be set.
val with_file : ?perm:file_perm ‑> string ‑> mode:open_flag list ‑> f:(File_descr.t ‑> 'a) ‑> 'a
with_file file ~mode ~perm ~f
opens file
, and applies f
to the resulting file
descriptor. When f
finishes (or raises), with_file
closes the descriptor and
returns the result of f
(or raises).
val read : ?restart:bool ‑> ?pos:int ‑> ?len:int ‑> File_descr.t ‑> buf:Core__.Import.Bytes.t ‑> int
read fd buff ofs len
reads len
characters from descriptor
fd
, storing them in string buff
, starting at position ofs
in string buff
. Return the number of characters actually read.
val write : ?pos:int ‑> ?len:int ‑> File_descr.t ‑> buf:Core__.Import.Bytes.t ‑> int
write fd buff ofs len
writes len
characters to descriptor
fd
, taking them from bytes buff
, starting at position ofs
in bytes buff
. Return the number of characters actually
written.
When an error is reported some characters might have already been
written. Use single_write
instead to ensure that this is not the
case.
WARNING: write is an interruptible call and has no way to handle EINTR properly. You should most probably be using single write.
val write_substring : ?pos:int ‑> ?len:int ‑> File_descr.t ‑> buf:string ‑> int
Same as write
but with a string buffer.
val single_write : ?restart:bool ‑> ?pos:int ‑> ?len:int ‑> File_descr.t ‑> buf:Core__.Import.Bytes.t ‑> int
Same as write
but ensures that all errors are reported and
that no character has ever been written when an error is reported.
val single_write_substring : ?restart:bool ‑> ?pos:int ‑> ?len:int ‑> File_descr.t ‑> buf:string ‑> int
Same as single_write
but with a string buffer.
val in_channel_of_descr : File_descr.t ‑> Core__.Import.In_channel.t
Create an input channel reading from the given descriptor.
The channel is initially in binary mode; use
set_binary_mode_in ic false
if text mode is desired.
val out_channel_of_descr : File_descr.t ‑> Core__.Import.Out_channel.t
Create an output channel writing on the given descriptor.
The channel is initially in binary mode; use
set_binary_mode_out oc false
if text mode is desired.
val descr_of_in_channel : Core__.Import.In_channel.t ‑> File_descr.t
Return the descriptor corresponding to an input channel.
val descr_of_out_channel : Core__.Import.Out_channel.t ‑> File_descr.t
Return the descriptor corresponding to an output channel.
type seek_command
= Unix.seek_command
=
POSITIONING modes for UnixLabels.lseek.
include sig ... end
val seek_command_of_sexp : Base.Sexp.t ‑> seek_command
val sexp_of_seek_command : seek_command ‑> Base.Sexp.t
val lseek : File_descr.t ‑> int64 ‑> mode:seek_command ‑> int64
Set the current position for a file descriptor
val ftruncate : File_descr.t ‑> len:int64 ‑> unit
Truncates the file corresponding to the given descriptor to the given size.
include sig ... end
val file_kind_of_sexp : Base.Sexp.t ‑> file_kind
val sexp_of_file_kind : file_kind ‑> Base.Sexp.t
type stats
= Unix.LargeFile.stats
=
{
st_dev : int; | (** Device number *) |
st_ino : int; | (** Inode number *) |
st_kind : file_kind; | (** Kind of the file *) |
st_perm : file_perm; | (** Access rights *) |
st_nlink : int; | (** Number of links *) |
st_uid : int; | (** User id of the owner *) |
st_gid : int; | (** Group ID of the file's group *) |
st_rdev : int; | (** Device minor number *) |
st_size : int64; | (** Size in bytes *) |
st_atime : float; | (** Last access time *) |
st_mtime : float; | (** Last modification time *) |
st_ctime : float; | (** Last status change time *) |
}
The informations returned by the UnixLabels.stat calls. The times are float
number of seconds since the epoch; we don't use Time.t
because Time
depends on
Unix
, so the fix isn't so trivial. Same for Native_file.stats
below.
val lstat : string ‑> stats
Same as UnixLabels.stat, but in case the file is a symbolic link, return the information for the link itself.
val fstat : File_descr.t ‑> stats
Return the information for the file associated with the given descriptor.
module Native_file = Core__.Core_unix.Native_file
This sub-module provides the normal OCaml Unix functions that deal with file size using native ints. These are here because, in general, you should be using 64bit file operations so that large files aren't an issue. If you have a real need to use potentially 31bit file operations (and you should be dubious of such a need) you can open this module
type lock_command
= Unix.lock_command
=
Commands for lockf.
include sig ... end
val lock_command_of_sexp : Base.Sexp.t ‑> lock_command
val sexp_of_lock_command : lock_command ‑> Base.Sexp.t
val lockf : File_descr.t ‑> mode:lock_command ‑> len:Core__.Import.Int64.t ‑> unit
lockf fd cmd size
place a lock on a file_descr that prevents any other process from
* calling lockf successfully on the same file. Due to a limitation in the current
* implementation the length will be converted to a native int, potentially throwing an
* exception if it is too large.
module Flock_command = Core__.Core_unix.Flock_command
val flock : File_descr.t ‑> Flock_command.t ‑> bool
flock fd cmd
places or releases a lock on the fd as per the flock C call of the same
name.
val isatty : File_descr.t ‑> bool
Return true
if the given file descriptor refers to a terminal or
console window, false
otherwise.
val rename : src:string ‑> dst:string ‑> unit
rename old new
changes the name of a file from old
to new
.
val link : ?force:bool ‑> target:string ‑> link_name:string ‑> unit ‑> unit
link ?force ~target ~link_name ()
creates a hard link named link_name
to the file named target
. If force
is true, an existing entry in
place of link_name
will be unlinked. This unlinking may raise a Unix
error, e.g. if the entry is a directory.
val chown : string ‑> uid:int ‑> gid:int ‑> unit
Change the owner uid and owner gid of the named file.
val fchown : File_descr.t ‑> uid:int ‑> gid:int ‑> unit
Change the owner uid and owner gid of an opened file.
val access : string ‑> [ `Read | `Write | `Exec | `Exists ] list ‑> (unit, exn) Core__.Import.Result.t
Check that the process has the given permissions over the named file.
val dup : File_descr.t ‑> File_descr.t
Return a new file descriptor referencing the same file as the given descriptor.
val dup2 : src:File_descr.t ‑> dst:File_descr.t ‑> unit
dup2 ~src ~dst
duplicates src
to dst
, closing dst
if already
opened.
val set_nonblock : File_descr.t ‑> unit
Set the ``non-blocking'' flag on the given descriptor.
When the non-blocking flag is set, reading on a descriptor
on which there is temporarily no data available raises the
EAGAIN
or EWOULDBLOCK
error instead of blocking;
writing on a descriptor on which there is temporarily no room
for writing also raises EAGAIN
or EWOULDBLOCK
.
val clear_nonblock : File_descr.t ‑> unit
Clear the ``non-blocking'' flag on the given descriptor. See UnixLabels.set_nonblock.
val set_close_on_exec : File_descr.t ‑> unit
Set the ``close-on-exec'' flag on the given descriptor.
A descriptor with the close-on-exec flag is automatically
closed when the current process starts another program with
one of the exec
functions.
val clear_close_on_exec : File_descr.t ‑> unit
Clear the ``close-on-exec'' flag on the given descriptor. See UnixLabels.set_close_on_exec.
val mkdir : ?perm:file_perm ‑> string ‑> unit
Create a directory. The permissions of the created directory are (perm & ~umask & 0777). The default perm is 0777.
val mkdir_p : ?perm:file_perm ‑> string ‑> unit
Create a directory recursively. The permissions of the created directory are
those granted by mkdir ~perm
.
val readdir_opt : dir_handle ‑> string option
Return the next entry in a directory. Returns None
when the end of the directory
has been reached.
val readdir : dir_handle ‑> string
Same as readdir_opt
except that it signals the end of the directory by raising
End_of_file
.
val pipe : unit ‑> File_descr.t * File_descr.t
Create a pipe. The first component of the result is opened for reading, that's the exit to the pipe. The second component is opened for writing, that's the entrance to the pipe.
module Process_info = Core__.Core_unix.Process_info
Low-level process
val create_process : prog:string ‑> args:string list ‑> Process_info.t
create_process ~prog ~args
forks a new process that executes the program prog
with
arguments args
. The function returns the pid of the process along with file
descriptors attached to stdin, stdout, and stderr of the new process. The executable
file prog
is searched for in the path. The new process has the same environment as
the current process. Unlike in execve
the program name is automatically passed as
the first argument.
val create_process_env : ?working_dir:string ‑> prog:string ‑> args:string list ‑> env:env ‑> unit ‑> Process_info.t
create_process_env ~prog ~args ~env
as create_process
, but takes an additional
parameter that extends or replaces the current environment. No effort is made to
ensure that the keys passed in as env are unique, so if an environment variable is set
twice the second version will override the first.
val open_process_in : string ‑> Core__.Import.In_channel.t
High-level pipe and process management. These functions
(with UnixLabels.open_process_out and UnixLabels.open_process)
run the given command in parallel with the program,
and return channels connected to the standard input and/or
the standard output of the command. The command is interpreted
by the shell /bin/sh
(cf. system
). Warning: writes on channels
are buffered, hence be careful to call Pervasives.flush at the right times
to ensure correct synchronization.
val open_process : string ‑> Core__.Import.In_channel.t * Core__.Import.Out_channel.t
See UnixLabels.open_process_in.
module Process_channels = Core__.Core_unix.Process_channels
Similar to UnixLabels.open_process, but the second argument specifies the environment passed to the command. The result is a triple of channels connected to the standard output, standard input, and standard error of the command.
val open_process_full : string ‑> env:string array ‑> Process_channels.t
close_process_*
raises Unix_error
if, for example, the file descriptor has already
been closed.
val close_process_in : Core__.Import.In_channel.t ‑> Exit_or_signal.t
Close channels opened by UnixLabels.open_process_in, wait for the associated command to terminate, and return its termination status.
val close_process_out : Core__.Import.Out_channel.t ‑> Exit_or_signal.t
Close channels opened by UnixLabels.open_process_out, wait for the associated command to terminate, and return its termination status.
val close_process : (Core__.Import.In_channel.t * Core__.Import.Out_channel.t) ‑> Exit_or_signal.t
Close channels opened by UnixLabels.open_process, wait for the associated command to terminate, and return its termination status.
val close_process_full : Process_channels.t ‑> Exit_or_signal.t
Close channels opened by UnixLabels.open_process_full, wait for the associated command to terminate, and return its termination status.
val symlink : src:string ‑> dst:string ‑> unit
symlink source dest
creates the file dest
as a symbolic link
to the file source
.
On Windows, this has the semantics using stat
as described at:
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html
module Select_fds = Core__.Core_unix.Select_fds
include sig ... end
val sexp_of_select_timeout : select_timeout ‑> Base.Sexp.t
val select : ?restart:bool ‑> read:File_descr.t list ‑> write:File_descr.t list ‑> except:File_descr.t list ‑> timeout:select_timeout ‑> unit ‑> Select_fds.t
Wait until some input/output operations become possible on some channels. The three
list arguments are a set of descriptors to check for reading, for writing, or for
exceptional conditions. ~timeout
is the maximal timeout. The result is composed of
three sets of descriptors: those ready for reading, ready for writing, and over which
an exceptional condition is pending.
Setting restart to true means that we want select
to restart automatically on EINTR
(instead of propagating the exception)...
type process_times
= Unix.process_times
=
{
}
The execution times (CPU times) of a process.
include sig ... end
val process_times_of_sexp : Base.Sexp.t ‑> process_times
val sexp_of_process_times : process_times ‑> Base.Sexp.t
module Clock = Core__.Core_unix.Clock
type tm
= Unix.tm
=
{
}
The type representing wallclock time and calendar date.
val gmtime : float ‑> tm
Convert a time in seconds, as returned by UnixLabels.time, into a date and a time. Assumes UTC.
val localtime : float ‑> tm
Convert a time in seconds, as returned by UnixLabels.time, into a date and a time. Assumes the local time zone.
Convert a date and time, specified by the tm
argument, into
a time in seconds, as returned by UnixLabels.time. Also return a normalized
copy of the given tm
record, with the tm_wday
, tm_yday
,
and tm_isdst
fields recomputed from the other fields.
The tm
argument is interpreted in the local time zone.
val strftime : tm ‑> string ‑> string
Convert a date and time, specified by the tm
argument, into a formatted string.
See 'man strftime' for format options.
val strptime : fmt:string ‑> string ‑> Unix.tm
Given a format string, convert a corresponding string to a date and time See 'man strptime' for format options.
val nanosleep : float ‑> float
nanosleep f
delays execution of the program for at least f
seconds. The function
can return earlier if a signal has been delivered, in which case the number of seconds
left is returned. Any other failure raises an exception.
val utimes : string ‑> access:float ‑> modif:float ‑> unit
Set the last access time (second arg) and last modification time (third arg) for a file. Times are expressed in seconds from 00:00:00 GMT, Jan. 1, 1970.
type interval_timer
= Unix.interval_timer
=
The three kinds of interval timers.
include sig ... end
val interval_timer_of_sexp : Base.Sexp.t ‑> interval_timer
val sexp_of_interval_timer : interval_timer ‑> Base.Sexp.t
type interval_timer_status
= Unix.interval_timer_status
=
{
it_interval : float; | (** Period *) |
it_value : float; | (** Current value of the timer *) |
}
The type describing the status of an interval timer
include sig ... end
val interval_timer_status_of_sexp : Base.Sexp.t ‑> interval_timer_status
val sexp_of_interval_timer_status : interval_timer_status ‑> Base.Sexp.t
val getitimer : interval_timer ‑> interval_timer_status
Return the current status of the given interval timer.
val setitimer : interval_timer ‑> interval_timer_status ‑> interval_timer_status
setitimer t s
sets the interval timer t
and returns
its previous status. The s
argument is interpreted as follows:
s.it_value
, if nonzero, is the time to the next timer expiration;
s.it_interval
, if nonzero, specifies a value to
be used in reloading it_value when the timer expires.
Setting s.it_value
to zero disable the timer.
Setting s.it_interval
to zero causes the timer to be disabled
after its next expiration.
It's highly recommended to read the straight unix docs on these functions for more color. You can get that info from man pages or http://www.opengroup.org/onlinepubs/000095399/functions/setuid.html
val setuid : int ‑> unit
Sets the real user id and effective user id for the process. Only use this when superuser. To setuid as an ordinary user, see Core_extended.Unix.seteuid.
module Protocol_family = Core__.Core_unix.Protocol_family
module Inet_addr = Core__.Core_unix.Inet_addr
module Cidr = Core__.Core_unix.Cidr
A representation of CIDR netmasks (e.g. "192.168.0.0/24") and functions to match if a
given address is inside the range or not. Only IPv4 addresses are supported. Values
are always normalized so the base address is the lowest IP address in the range, so
for example to_string (of_string "192.168.1.101/24") = "192.168.1.0/24"
.
type socket_domain
= Unix.socket_domain
=
| PF_UNIX | (** Unix domain *) |
| PF_INET | (** Internet domain *) |
| PF_INET6 | (** Internet domain (IPv6) *) |
The type of socket domains.
include sig ... end
val socket_domain_of_sexp : Base.Sexp.t ‑> socket_domain
val sexp_of_socket_domain : socket_domain ‑> Base.Sexp.t
val bin_socket_domain : socket_domain Bin_prot.Type_class.t
val bin_read_socket_domain : socket_domain Bin_prot.Read.reader
val __bin_read_socket_domain__ : (int ‑> socket_domain) Bin_prot.Read.reader
val bin_reader_socket_domain : socket_domain Bin_prot.Type_class.reader
val bin_size_socket_domain : socket_domain Bin_prot.Size.sizer
val bin_write_socket_domain : socket_domain Bin_prot.Write.writer
val bin_writer_socket_domain : socket_domain Bin_prot.Type_class.writer
val bin_shape_socket_domain : Bin_prot.Shape.t
type socket_type
= Unix.socket_type
=
| SOCK_STREAM | (** Stream socket *) |
| SOCK_DGRAM | (** Datagram socket *) |
| SOCK_RAW | (** Raw socket *) |
| SOCK_SEQPACKET | (** Sequenced packets socket *) |
The type of socket kinds, specifying the semantics of communications.
include sig ... end
val socket_type_of_sexp : Base.Sexp.t ‑> socket_type
val sexp_of_socket_type : socket_type ‑> Base.Sexp.t
val bin_socket_type : socket_type Bin_prot.Type_class.t
val bin_read_socket_type : socket_type Bin_prot.Read.reader
val __bin_read_socket_type__ : (int ‑> socket_type) Bin_prot.Read.reader
val bin_reader_socket_type : socket_type Bin_prot.Type_class.reader
val bin_size_socket_type : socket_type Bin_prot.Size.sizer
val bin_write_socket_type : socket_type Bin_prot.Write.writer
val bin_writer_socket_type : socket_type Bin_prot.Type_class.writer
val bin_shape_socket_type : Bin_prot.Shape.t
The type of socket addresses. ADDR_UNIX name
is a socket address in the Unix domain;
name
is a file name in the file system. ADDR_INET(addr,port)
is a socket address
in the Internet domain; addr
is the Internet address of the machine, and port
is
the port number.
include sig ... end
val bin_sockaddr : sockaddr Bin_prot.Type_class.t
val bin_read_sockaddr : sockaddr Bin_prot.Read.reader
val __bin_read_sockaddr__ : (int ‑> sockaddr) Bin_prot.Read.reader
val bin_reader_sockaddr : sockaddr Bin_prot.Type_class.reader
val bin_size_sockaddr : sockaddr Bin_prot.Size.sizer
val bin_write_sockaddr : sockaddr Bin_prot.Write.writer
val bin_writer_sockaddr : sockaddr Bin_prot.Type_class.writer
val bin_shape_sockaddr : Bin_prot.Shape.t
val sexp_of_sockaddr : sockaddr ‑> Base.Sexp.t
val sockaddr_of_sexp : Core__.Import.Sexp.t ‑> sockaddr
sockaddr_blocking_sexp
is like sockaddr
, with of_sexp
that performs DNS lookup
to resolve Inet_addr.t
.
include sig ... end
val bin_sockaddr_blocking_sexp : sockaddr_blocking_sexp Bin_prot.Type_class.t
val bin_read_sockaddr_blocking_sexp : sockaddr_blocking_sexp Bin_prot.Read.reader
val __bin_read_sockaddr_blocking_sexp__ : (int ‑> sockaddr_blocking_sexp) Bin_prot.Read.reader
val bin_reader_sockaddr_blocking_sexp : sockaddr_blocking_sexp Bin_prot.Type_class.reader
val bin_size_sockaddr_blocking_sexp : sockaddr_blocking_sexp Bin_prot.Size.sizer
val bin_write_sockaddr_blocking_sexp : sockaddr_blocking_sexp Bin_prot.Write.writer
val bin_writer_sockaddr_blocking_sexp : sockaddr_blocking_sexp Bin_prot.Type_class.writer
val bin_shape_sockaddr_blocking_sexp : Bin_prot.Shape.t
val sockaddr_blocking_sexp_of_sexp : Base.Sexp.t ‑> sockaddr_blocking_sexp
val sexp_of_sockaddr_blocking_sexp : sockaddr_blocking_sexp ‑> Base.Sexp.t
val domain_of_sockaddr : sockaddr ‑> socket_domain
Return the socket domain adequate for the given socket address.
val socket : domain:socket_domain ‑> kind:socket_type ‑> protocol:int ‑> File_descr.t
Create a new socket in the given domain, and with the given kind. The third argument is the protocol type; 0 selects the default protocol for that kind of sockets.
val socketpair : domain:socket_domain ‑> kind:socket_type ‑> protocol:int ‑> File_descr.t * File_descr.t
Create a pair of unnamed sockets, connected together.
val accept : File_descr.t ‑> File_descr.t * sockaddr
Accept connections on the given socket. The returned descriptor is a socket connected to the client; the returned address is the address of the connecting client.
val listen : File_descr.t ‑> backlog:int ‑> unit
Set up a socket for receiving connection requests. The integer argument is the number
of pending requests that will be established and queued for accept. Depending on
operating system, version, and configuration, subsequent connections may be refused
actively (as with RST
), ignored, or effectively established and queued anyway.
Because handling of excess connections varies, it is most robust for applications to
accept and close excess connections if they can. To be sure the client receives an
RST
rather than an orderly shutdown, you can setsockopt_optint file_descr SO_LINGER
(Some 0)
before closing.
In Linux, for example, the system configuration parameters tcp_max_syn_backlog
,
tcp_abort_on_overflow
, and syncookies
can all affect connection queuing
behavior.
type shutdown_command
= Unix.shutdown_command
=
| SHUTDOWN_RECEIVE | (** Close for receiving *) |
| SHUTDOWN_SEND | (** Close for sending *) |
| SHUTDOWN_ALL | (** Close both *) |
The type of commands for shutdown
.
include sig ... end
val shutdown_command_of_sexp : Base.Sexp.t ‑> shutdown_command
val sexp_of_shutdown_command : shutdown_command ‑> Base.Sexp.t
val shutdown : File_descr.t ‑> mode:shutdown_command ‑> unit
Shutdown a socket connection. SHUTDOWN_SEND
as second argument
causes reads on the other end of the connection to return
an end-of-file condition.
SHUTDOWN_RECEIVE
causes writes on the other end of the connection
to return a closed pipe condition (SIGPIPE
signal).
val getpeername : File_descr.t ‑> sockaddr
Return the address of the host connected to the given socket.
include sig ... end
val msg_flag_of_sexp : Base.Sexp.t ‑> msg_flag
val sexp_of_msg_flag : msg_flag ‑> Base.Sexp.t
val recv : File_descr.t ‑> buf:Core__.Import.Bytes.t ‑> pos:int ‑> len:int ‑> mode:msg_flag list ‑> int
Receive data from a connected socket.
val recvfrom : File_descr.t ‑> buf:Core__.Import.Bytes.t ‑> pos:int ‑> len:int ‑> mode:msg_flag list ‑> int * sockaddr
Receive data from an unconnected socket.
val send : File_descr.t ‑> buf:Core__.Import.Bytes.t ‑> pos:int ‑> len:int ‑> mode:msg_flag list ‑> int
Send data over a connected socket.
val send_substring : File_descr.t ‑> buf:string ‑> pos:int ‑> len:int ‑> mode:msg_flag list ‑> int
Same as send
but with a string buffer.
val sendto : File_descr.t ‑> buf:Core__.Import.Bytes.t ‑> pos:int ‑> len:int ‑> mode:msg_flag list ‑> addr:sockaddr ‑> int
Send data over an unconnected socket.
val sendto_substring : File_descr.t ‑> buf:string ‑> pos:int ‑> len:int ‑> mode:msg_flag list ‑> addr:sockaddr ‑> int
Same as sendto
but with a string buffer.
type socket_bool_option
=
The socket options that can be consulted with UnixLabels.getsockopt
and modified with UnixLabels.setsockopt. These options have a boolean
(true
/false
) value.
include sig ... end
val socket_bool_option_of_sexp : Base.Sexp.t ‑> socket_bool_option
val sexp_of_socket_bool_option : socket_bool_option ‑> Base.Sexp.t
type socket_int_option
=
The socket options that can be consulted with UnixLabels.getsockopt_int and modified with UnixLabels.setsockopt_int. These options have an integer value.
include sig ... end
val socket_int_option_of_sexp : Base.Sexp.t ‑> socket_int_option
val sexp_of_socket_int_option : socket_int_option ‑> Base.Sexp.t
type socket_optint_option
=
| SO_LINGER | (** Whether to linger on closed connections with sexp that have data present, and for how long (in seconds) *) |
The socket options that can be consulted with UnixLabels.getsockopt_optint
and modified with UnixLabels.setsockopt_optint. These options have a
value of type int option
, with None
meaning ``disabled''.
type socket_float_option
=
| SO_RCVTIMEO | (** Timeout for input operations *) |
| SO_SNDTIMEO | (** Timeout for output operations *) |
The socket options that can be consulted with UnixLabels.getsockopt_float and modified with UnixLabels.setsockopt_float. These options have a floating-point value representing a time in seconds. The value 0 means infinite timeout.
include sig ... end
val socket_float_option_of_sexp : Base.Sexp.t ‑> socket_float_option
val sexp_of_socket_float_option : socket_float_option ‑> Base.Sexp.t
val getsockopt : File_descr.t ‑> socket_bool_option ‑> bool
Return the current status of a boolean-valued option in the given socket.
val setsockopt : File_descr.t ‑> socket_bool_option ‑> bool ‑> unit
Set or clear a boolean-valued option in the given socket.
val getsockopt_int : File_descr.t ‑> socket_int_option ‑> int
Same as UnixLabels.getsockopt for an integer-valued socket option.
val setsockopt_int : File_descr.t ‑> socket_int_option ‑> int ‑> unit
Same as UnixLabels.setsockopt for an integer-valued socket option.
val getsockopt_optint : File_descr.t ‑> socket_optint_option ‑> int option
Same as UnixLabels.getsockopt for a socket option whose value is an int option
.
val setsockopt_optint : File_descr.t ‑> socket_optint_option ‑> int option ‑> unit
Same as UnixLabels.setsockopt for a socket option whose value is an int option
.
val getsockopt_float : File_descr.t ‑> socket_float_option ‑> float
Same as UnixLabels.getsockopt for a socket option whose value is a floating-point number.
val setsockopt_float : File_descr.t ‑> socket_float_option ‑> float ‑> unit
Same as UnixLabels.setsockopt for a socket option whose value is a floating-point number.
val open_connection : sockaddr ‑> Core__.Import.In_channel.t * Core__.Import.Out_channel.t
Connect to a server at the given address. Return a pair of buffered channels connected to the server. Remember to call Pervasives.flush on the output channel at the right times to ensure correct synchronization.
val shutdown_connection : Core__.Import.In_channel.t ‑> unit
``Shut down'' a connection established with UnixLabels.open_connection; that is, transmit an end-of-file condition to the server reading on the other side of the connection.
val establish_server : (Core__.Import.In_channel.t ‑> Core__.Import.Out_channel.t ‑> unit) ‑> addr:sockaddr ‑> unit
Establish a server on the given address. The function given as first argument is called for each connection with two buffered channels connected to the client. A new process is created for each connection. The function UnixLabels.establish_server never returns normally.
module Host = Core__.Core_unix.Host
module Protocol = Core__.Core_unix.Protocol
module Service = Core__.Core_unix.Service
type addr_info
=
{
ai_family : socket_domain; | (** Socket domain *) |
ai_socktype : socket_type; | (** Socket type *) |
ai_protocol : int; | (** Socket protocol number *) |
ai_addr : sockaddr; | (** Address *) |
ai_canonname : string; | (** Canonical host name *) |
}
Address information returned by Unix.getaddrinfo.
include sig ... end
val sexp_of_addr_info : addr_info ‑> Base.Sexp.t
addr_info_blocking_sexp
is like addr_info
, with of_sexp
that performs DNS lookup
to resolve Inet_addr.t
.
include sig ... end
val addr_info_blocking_sexp_of_sexp : Base.Sexp.t ‑> addr_info_blocking_sexp
val sexp_of_addr_info_blocking_sexp : addr_info_blocking_sexp ‑> Base.Sexp.t
type getaddrinfo_option
=
| AI_FAMILY of socket_domain | (** Impose the given socket domain *) |
| AI_SOCKTYPE of socket_type | (** Impose the given socket type *) |
| AI_PROTOCOL of int | (** Impose the given protocol *) |
| AI_NUMERICHOST | (** Do not call name resolver, expect numeric IP address *) |
| AI_CANONNAME | (** Fill the |
| AI_PASSIVE | (** Set address to ``any'' address for use with Unix.bind *) |
Options to Unix.getaddrinfo.
include sig ... end
val getaddrinfo_option_of_sexp : Base.Sexp.t ‑> getaddrinfo_option
val sexp_of_getaddrinfo_option : getaddrinfo_option ‑> Base.Sexp.t
val getaddrinfo : string ‑> string ‑> getaddrinfo_option list ‑> addr_info list
getaddrinfo host service opts
returns a list of Unix.addr_info
records describing socket parameters and addresses suitable for
communicating with the given host and service. The empty list is
returned if the host or service names are unknown, or the constraints
expressed in opts
cannot be satisfied.
host
is either a host name or the string representation of an IP
address. host
can be given as the empty string; in this case,
the ``any'' address or the ``loopback'' address are used,
depending whether opts
contains AI_PASSIVE
.
service
is either a service name or the string representation of
a port number. service
can be given as the empty string;
in this case, the port field of the returned addresses is set to 0.
opts
is a possibly empty list of options that allows the caller
to force a particular socket domain (e.g. IPv6 only, or IPv4 only)
or a particular socket type (e.g. TCP only or UDP only).
type name_info
=
{
ni_hostname : string; | (** Name or IP address of host *) |
ni_service : string; | (** Name of service or port number *) |
}
Host and service information returned by Unix.getnameinfo.
include sig ... end
val name_info_of_sexp : Base.Sexp.t ‑> name_info
val sexp_of_name_info : name_info ‑> Base.Sexp.t
type getnameinfo_option
=
Options to Unix.getnameinfo.
include sig ... end
val getnameinfo_option_of_sexp : Base.Sexp.t ‑> getnameinfo_option
val sexp_of_getnameinfo_option : getnameinfo_option ‑> Base.Sexp.t
val getnameinfo : sockaddr ‑> getnameinfo_option list ‑> name_info
getnameinfo addr opts
returns the host name and service name
corresponding to the socket address addr
. opts
is a possibly
empty list of options that governs how these names are obtained.
Raise Not_found
if an error occurs.
The following functions implement the POSIX standard terminal
interface. They provide control over asynchronous communication ports
and pseudo-terminals. Refer to the termios
man page for a complete
description.
module Terminal_io = Core__.Core_unix.Terminal_io
val set_in_channel_timeout : Core__.Import.In_channel.t ‑> float ‑> unit
Set a timeout for a socket associated with an In_channel.t
val set_out_channel_timeout : Core__.Import.Out_channel.t ‑> float ‑> unit
Set a timeout for a socket associated with an Out_channel.t
val exit_immediately : int ‑> _
exit_immediately exit_code
immediately calls the exit
system call with the given
exit code without performing any other actions (unlike Pervasives.exit). Does not
return.
val mknod : ?file_kind:file_kind ‑> ?perm:int ‑> ?major:int ‑> ?minor:int ‑> string ‑> unit
mknod ?file_kind ?perm ?major ?minor path
creates a filesystem
entry. Note that only FIFO-entries are guaranteed to be supported
across all platforms as required by the POSIX-standard. On Linux
directories and symbolic links cannot be created with this function.
Use Unix.mkdir and Unix.symlink instead there respectively.
S_REG
(= regular file)0o600
(= read/write for user only)0
0
external dirfd : dir_handle ‑> File_descr.t = "unix_dirfd"
Extract a file descriptor from a directory handle.
external fsync : File_descr.t ‑> unit = "unix_fsync"
external fdatasync : File_descr.t ‑> unit = "unix_fdatasync"
Synchronize the kernel buffers of a given file descriptor with disk, but do not necessarily write file attributes.
val readdir_ino_opt : dir_handle ‑> (string * nativeint) option
readdir_ino_opt dh
return the next entry in a directory (((filename, inode)
). Returns
None
when the end of the directory has been reached.
external readdir_ino : dir_handle ‑> string * nativeint = "unix_readdir_ino_stub"
Same as readdir_ino_opt
except that it signals the end of the directory by raising
End_of_file
.
val read_assume_fd_is_nonblocking : File_descr.t ‑> ?pos:int ‑> ?len:int ‑> Core__.Import.Bytes.t ‑> int
read_assume_fd_is_nonblocking fd ?pos ?len buf
calls the system call
read
ASSUMING THAT IT IS NOT GOING TO BLOCK. Reads at most len
bytes into buffer buf
starting at position pos
. returns the
number of bytes actually read.
String.length buf - pos
val write_assume_fd_is_nonblocking : File_descr.t ‑> ?pos:int ‑> ?len:int ‑> Core__.Import.Bytes.t ‑> int
write_assume_fd_is_nonblocking fd ?pos ?len buf
calls the system call
write
ASSUMING THAT IT IS NOT GOING TO BLOCK. Writes at most len
bytes from buffer buf
starting at position pos
. returns the
number of bytes actually written.
String.length buf - pos
val writev_assume_fd_is_nonblocking : File_descr.t ‑> ?count:int ‑> string IOVec.t array ‑> int
writev_assume_fd_is_nonblocking fd ?count iovecs
calls the system call
writev
ASSUMING THAT IT IS NOT GOING TO BLOCK using count
I/O-vectors iovecs
. returns the number of bytes actually written.
val writev : File_descr.t ‑> ?count:int ‑> string IOVec.t array ‑> int
writev fd ?count iovecs
like writev_assume_fd_is_nonblocking, but does
not require the descriptor to not block. If you feel you have to
use this function, you should probably have chosen I/O-vectors that
build on bigstrings, because this function has to internally blit
the I/O-vectors (ordinary OCaml strings) to intermediate buffers on
the C-heap.
external pselect : File_descr.t list ‑> File_descr.t list ‑> File_descr.t list ‑> float ‑> int list ‑> File_descr.t list * File_descr.t list * File_descr.t list = "unix_pselect_stub"
pselect rfds wfds efds timeout sigmask
like Core_unix.select but
also allows one to wait for the arrival of signals.
type sysconf
=
| ARG_MAX |
| CHILD_MAX |
| HOST_NAME_MAX |
| LOGIN_NAME_MAX |
| OPEN_MAX |
| PAGESIZE |
| RE_DUP_MAX |
| STREAM_MAX |
| SYMLOOP_MAX |
| TTY_NAME_MAX |
| TZNAME_MAX |
| POSIX_VERSION |
| PHYS_PAGES |
| AVPHYS_PAGES |
| IOV_MAX |
include sig ... end
val sysconf_of_sexp : Base.Sexp.t ‑> sysconf
val sexp_of_sysconf : sysconf ‑> Base.Sexp.t
val sysconf_exn : sysconf ‑> int64
val mkstemp : string ‑> string * File_descr.t
mkstemp prefix
creates and opens a unique temporary file with prefix
,
automatically appending a suffix of .tmp.
followed by six random characters to make
the name unique. Unlike C's mkstemp
, prefix
should not include six X's at the
end.
The file descriptor will have close-on-exec flag set if O_CLOEXEC flag is supported.
val mkdtemp : string ‑> string
mkdtemp prefix
creates a temporary directory with prefix
, automatically appending
a suffix of .tmp.
followed by six random characters to make the name unique.
external abort : unit ‑> _ = "unix_abort"
Causes abnormal program termination unless the signal SIGABRT is caught and the signal handler does not return. If the SIGABRT signal is blocked or ignored, the abort() function will still override it.
val getgrouplist : string ‑> int ‑> int array
getgrouplist user group
returns the list of groups to which user
belongs.
See 'man getgrouplist'.
val getgroups : unit ‑> int array
Return the list of groups to which the user executing the process belongs.
val fnmatch : ?flags:[ `No_escape | `Pathname | `Period | `File_name | `Leading_dir | `Casefold ] list ‑> pat:string ‑> string ‑> bool
no system calls involved
val wordexp : (?flags:[ `No_cmd | `Show_err | `Undef ] list ‑> string ‑> string array) Core__.Import.Or_error.t
See man page for wordexp.
module Utsname = Core__.Core_unix.Utsname
val if_indextoname : int ‑> string
if_indextoname ifindex
If ifindex
is an interface index, then
the function returns the interface name. Otherwise, it raises
Unix_error
.
val mcast_join : ?ifname:string ‑> ?source:Inet_addr.t ‑> File_descr.t ‑> sockaddr ‑> unit
mcast_join ?ifname sock addr
join a multicast group at addr
with socket sock
,
from source at source
if specified, optionally using network interface ifname
.
val mcast_leave : ?ifname:string ‑> File_descr.t ‑> sockaddr ‑> unit
mcast_leave ?ifname sock addr
leaves a multicast group at addr
with socket sock
,
optionally using network interface ifname
.
val get_mcast_ttl : File_descr.t ‑> int
get_mcast_ttl sock
reads the time-to-live value of outgoing multicast packets for
socket sock
.
val set_mcast_ttl : File_descr.t ‑> int ‑> unit
set_mcast_ttl sock ttl
sets the time-to-live value of outgoing multicast packets for
socket sock
to ttl
.
val get_mcast_loop : File_descr.t ‑> bool
get_mcast_loop sock
reads the boolean argument that determines whether sent
multicast packets are looped back to local sockets.
val set_mcast_loop : File_descr.t ‑> bool ‑> unit
set_mcast_loop sock loop
sets the boolean argument that determines whether sent
multicast packets are looped back to local sockets.
val set_mcast_ifname : File_descr.t ‑> string ‑> unit
set_mcast_ifname sock "eth0"
sets outgoing multicast traffic on IPv4 UDP socket
sock
to go out through interface eth0
.
This uses setsockopt
with IP_MULTICAST_IF
and applies to multicast traffic. For
non-multicast applications, see Linux_ext.bind_to_interface.
module Scheduler = Core__.Core_unix.Scheduler
module Priority = Core__.Core_unix.Priority
module Mman = Core__.Core_unix.Mman
For keeping your memory in RAM, i.e. preventing it from being swapped out.
module Syslog = Core__.Core_unix.Syslog
module Ifaddr = Core__.Core_unix.Ifaddr
A network interface on the local machine. See man getifaddrs
.
val getifaddrs : unit ‑> Ifaddr.t list
module Stable = Core__.Core_unix.Stable
include Extended_unix
val fork_exec : ?stdin:Core.Unix.File_descr.t ‑> ?stdout:Core.Unix.File_descr.t ‑> ?stderr:Core.Unix.File_descr.t ‑> ?path_lookup:bool ‑> ?env:[ `Extend of (string * string) list | `Replace of (string * string) list ] ‑> ?working_dir:string ‑> ?setuid:int ‑> ?setgid:int ‑> string ‑> string list ‑> Core.Pid.t
fork_exec prog args ~stdin ~stdout ~stderr ~setuid ~setgid
forks a new process that executes the program
in file prog
, with arguments args
. The pid of the new
process is returned immediately; the new process executes
concurrently with the current process.
The function raises EPERM if when using set{gid,uid}
and the user id is
not 0.
The standard input and outputs of the new process are connected
to the descriptors stdin
, stdout
and stderr
.
The close_on_exec flag is cleared from stderr
stdout
and stdin
so it's
safe to pass in fds with close_on_exec
set.
true
than we use PATH to find the process to exec.Parameter env: specifies the environment the process runs in
ERRORS: Unix.unix_error. This function should not raise EINTR; it will restart itself automatically.
RATIONAL:
setuid
and setgid
do not do a full id drop (e.g.: they save the id in
saved id) when the user does not have the privileges required to setuid to
anyone.
By default all file descriptors should be set_closexec ASAP after being open to avoid being captured in parallel execution of fork_exec; resetting the closexec flag on the forked flag is a cleaner and more thread safe approach.
BUGS: The capabilities for setuid in linux are not tied to the uid 0 (man 7 capabilities). It is still fair to assume that under most system this capability is there IFF uid == 0. A more fine grain permissionning approach would make this function non-portable and be hard to implement in an async-signal-way.
Because this function keeps the lock for most of its lifespan and restarts automatically on EINTR it might prevent the OCaml signal handlers to run in that thread.
external ntohl : Core.Int32.t ‑> Core.Int32.t = "extended_ml_ntohl"
Network to host order long, like C.
external htonl : Core.Int32.t ‑> Core.Int32.t = "extended_ml_htonl"
Host to network order long, like C.
type statvfs
=
{
}
include sig ... end
val statvfs_of_sexp : Base.Sexp.t ‑> statvfs
val sexp_of_statvfs : statvfs ‑> Base.Sexp.t
val bin_statvfs : statvfs Bin_prot.Type_class.t
val bin_read_statvfs : statvfs Bin_prot.Read.reader
val __bin_read_statvfs__ : (int ‑> statvfs) Bin_prot.Read.reader
val bin_reader_statvfs : statvfs Bin_prot.Type_class.reader
val bin_size_statvfs : statvfs Bin_prot.Size.sizer
val bin_write_statvfs : statvfs Bin_prot.Write.writer
val bin_writer_statvfs : statvfs Bin_prot.Type_class.writer
val bin_shape_statvfs : Bin_prot.Shape.t
module Extended_passwd = Extended_unix.Extended_passwd
external strptime : fmt:string ‑> string ‑> Core.Unix.tm = "unix_strptime"
The CIDR module moved into Core.Unix
module Mac_address = Extended_unix.Mac_address
module Quota = Extended_unix.Quota
module Mount_entry = Extended_unix.Mount_entry
val terminal_width : int Core.Lazy.t
module Pty : sig ... end