include sig ... end
val hash_fold_t : Base.Hash.state ‑> t ‑> Base.Hash.state
val hash : t ‑> Base.Hash.hash_value
Sexp conversions represent values as decimals if possible, or defaults to (x + y/z)
where x
is decimal and y
and z
are integers. So for example, 1/3 <->
(0.333333333 + 1/3000000000). In string and sexp conversions, values with denominator
of zero are special-cased: 0/0 <-> "nan", 1/0 <-> "inf", and -1/0 <-> "-inf".
include Core_kernel.Sexpable with type t := t
val t_of_sexp : Base.Sexp.t ‑> t
val sexp_of_t : t ‑> Base.Sexp.t
include Core_kernel.Comparable with type t := t
include Core_kernel__.Comparable_intf.S_common
include Base.Comparable.S
include Base__.Comparable_intf.Polymorphic_compare
ascending
is identical to compare
. descending x y = ascending y x
. These are
intended to be mnemonic when used like List.sort ~compare:ascending
and List.sort
~cmp:descending
, since they cause the list to be sorted in ascending or descending
order, respectively.
clamp_exn t ~min ~max
returns t'
, the closest value to t
such that
between t' ~low:min ~high:max
is true.
Raises if not (min <= max)
.
val clamp : t ‑> min:t ‑> max:t ‑> t Base.Or_error.t
include Base.Comparator.S with type t := t
val comparator : (t, comparator_witness) Base.Comparator.comparator
include Base__.Comparable_intf.Validate with type t := t
val validate_lbound : min:t Base.Maybe_bound.t ‑> t Base.Validate.check
val validate_ubound : max:t Base.Maybe_bound.t ‑> t Base.Validate.check
val validate_bound : min:t Base.Maybe_bound.t ‑> max:t Base.Maybe_bound.t ‑> t Base.Validate.check
module Replace_polymorphic_compare : Core_kernel__.Comparable_intf.Polymorphic_compare with type t := t
module Map : Core_kernel.Map.S with type Key.t = t with type Key.comparator_witness = comparator_witness
module Set : Core_kernel.Set.S with type Elt.t = t with type Elt.comparator_witness = comparator_witness
include Core_kernel.Hashable with type t := t
include Core_kernel.Hashable.Common
include sig ... end
val compare : t ‑> t ‑> Core_kernel__.Import.int
val hash_fold_t : Base.Hash.state ‑> t ‑> Base.Hash.state
val hash : t ‑> Base.Hash.hash_value
val hashable : t Core_kernel.Hashtbl.Hashable.t
module Table : Core_kernel.Hashtbl.S with type key = t
module Hash_set : Core_kernel.Hash_set.S with type elt = t
module Hash_queue : Core_kernel.Hash_queue.S with type Key.t = t
include Core_kernel.Binable with type t := t
include Core_kernel__.Binable0.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (int ‑> t) Bin_prot.Read.reader
This function only needs implementation if t
exposed to be a polymorphic variant.
Despite what the type reads, this does *not* produce a function after reading;
instead it takes the constructor tag (int) before reading and reads the rest of the
variant t
afterwards.
val bin_shape_t : Bin_prot.Shape.t
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_t : t Bin_prot.Type_class.t
gen
produces values with an order of magnitude (roughly the number of digits) in the
numerator and denominator proportional to Quickcheck.Generator.size
. Also includes
values with zero in the denominator.
val zero : t
val one : t
val ten : t
val hundred : t
val thousand : t
val million : t
val billion : t
val trillion : t
val tenth : t
val hundredth : t
val thousandth : t
val millionth : t
val billionth : t
val trillionth : t
Beware: 2 ** 8_000_000
will take at least a megabyte to store the result,
and multiplying numbers a megabyte long is slow no matter how clever your algorithm.
Be careful to ensure the second argument is reasonably-sized.
val iround : ?dir:[ `Down | `Up | `Nearest | `Zero ] ‑> ?to_multiple_of:int ‑> t ‑> int option
None
if the result would overflow or to_multiple_of
is zero.
val iround_exn : ?dir:[ `Down | `Up | `Nearest | `Zero ] ‑> ?to_multiple_of:int ‑> t ‑> int
Exception if the result would overflow or to_multiple_of
is zero.
Convenience wrapper around round
to round to the specified number
of decimal digits. This raises if the number is infinite or undefined.
val to_float : t ‑> float
val to_string_decimal_accurate_exn : t ‑> string
Accurate if possible. If this number is not representable as a finite decimal fraction, it raises instead.
val to_string_decimal_accurate : t ‑> string Core_kernel.Or_error.t
As above, returns Or_error.t instead of raising
val is_representable_as_decimal : t ‑> bool
true
if and only if to_string_decimal_accurate_exn
doesn't raise.
val to_string_hum : ?delimiter:char ‑> ?decimals:int ‑> ?strip_zero:bool ‑> t ‑> string
Pretty print bignum in an approximate decimal form or print inf, -inf, nan. For
example to_string_hum ~delimiter:',' ~decimals:3 ~strip_zero:false 1234.1999 =
"1,234.200"
. No delimiters are inserted to the right of the decimal.
val to_string_accurate : t ‑> string
Always accurate. If the number is representable as a finite decimal, it will return
this decimal string. If the denomiator is zero, it would return "nan", "inf" or
"-inf". Finally, if the bignum is a rational non representable as a decimal,
to_string_accurate t
returns an expression that evaluates to the right value.
Example: to_string_accurate (Bignum.of_string "1/3") = "(0.333333333 +
1/3000000000)"
.
Since the introduction of that function in the API, of_string
is able to read any
value returned by this function, and would yield the original bignum. That is:
fun bignum -> bignum |> to_string_accurate |> of_string
is the identity in Bignum
.
val of_float_decimal : float ‑> t
Transforming a float
into a Bignum.t
needs to be done with care. Most rationals
and decimals are not exactly representable as floats, thus their float representation
includes some small imprecision at the end of their decimal form (typically after the
17th digits). It is very likely that when transforming a float
into a Bignum.t
,
it is best to try to determine which was the original value and retrieve it instead of
honoring the noise coming from its imprecise float representation.
Given that the original value is not available in the context of a function whose type
is float -> Bignum.t
, it is not possible to solve that problem in a principled way.
However, a very reasonable approximation is to build the Bignum
from a short
string-representation of the float that guarantees the round-trip float |> to_string
|> of_string
. In particular, if the float was obtained from a short decimal string,
this heuristic in practice succeeds at retrieving the original value.
In the context where it is assumed that a float is a perfect representative of the
value meant to be modelled, the actual Bignum.t
value for it may be built using
of_float_dyadic
.
For example:
3.14
is not a representable decimal, thus:
of_float_dyadic (Float.of_string "3.14") = (3.14 + 7/56294995342131200)
of_float_decimal (Float.of_string "3.14") = 3.14
of_float_dyadic
used to be called of_float
but we think it is not the right
default choice, thus of_float
was deprecated, and we introduced different names for
this operation to force some explicit decision at call site.
After some time has passed, of_float_decimal
will be renamed to of_float
, thus
re-introducing of_float
in the API.
val of_float_dyadic : float ‑> t
val to_int_exn : t ‑> int
val is_zero : t ‑> bool
val sign : t ‑> int
val of_string : string ‑> t
val of_int : int ‑> t
val pp_hum : Format.formatter ‑> t ‑> unit
val pp_accurate : Format.formatter ‑> t ‑> unit
val gen_finite : t Core_kernel.Quickcheck.Generator.t
gen_finite
is like gen
but excludes values with zero in the denominator.
val gen_uniform_excl : t ‑> t ‑> t Core_kernel.Quickcheck.Generator.t
gen_uniform_excl lower_bound upper_bound
produces a uniform distribution between
lower_bound
and upper_bound
, exclusive, in units based on the fractional parts of
the bounds plus a number of decimal places proportional to
Quickcheck.Generator.size
.
val gen_incl : t ‑> t ‑> t Core_kernel.Quickcheck.Generator.t
gen_incl lower_bound upper_bound
produces a distribution of values between
lower_bound
and upper_bound
, inclusive, that is approximately uniform with extra
weight given to producing the endpoints lower_bound
and upper_bound
.
module Stable : sig ... end
module O : sig ... end
val to_string : t ‑> string