gen produces integers representable within Quickcheck.size bytes, with a random
sign.
include Core_kernel.Int_intf.S_unbounded with type t := tinclude Core_kernel.Int_intf.Extensioninclude sig ... endval bin_t : t Bin_prot.Type_class.tval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int ‑> t) Bin_prot.Read.readerval bin_reader_t : t Bin_prot.Type_class.readerval bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_writer_t : t Bin_prot.Type_class.writerval bin_shape_t : Bin_prot.Shape.tval typerep_of_t : t Typerep_lib.Std.Typerep.tval typename_of_t : t Typerep_lib.Std.Typename.tinclude Core_kernel.Identifiable.S with type t := tinclude sig ... endval bin_t : t Bin_prot.Type_class.tval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (Core_kernel__.Import.int ‑> t) Bin_prot.Read.readerval bin_reader_t : t Bin_prot.Type_class.readerval bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_writer_t : t Bin_prot.Type_class.writerval bin_shape_t : Bin_prot.Shape.tval hash_fold_t : Base.Hash.state ‑> t ‑> Base.Hash.stateval hash : t ‑> Base.Hash.hash_valueval t_of_sexp : Base.Sexp.t ‑> tval sexp_of_t : t ‑> Base.Sexp.tinclude Core_kernel.Identifiable.S_common with type t := tinclude sig ... endval compare : t ‑> t ‑> Core_kernel__.Import.intval hash_fold_t : Base.Hash.state ‑> t ‑> Base.Hash.stateval hash : t ‑> Base.Hash.hash_valueval sexp_of_t : t ‑> Base.Sexp.tinclude Core_kernel__.Import.Stringable.S with type t := tval of_string : string ‑> tval to_string : t ‑> stringinclude Core_kernel__.Import.Pretty_printer.S with type t := tval pp : Base.Formatter.t ‑> t ‑> unitinclude Core_kernel.Comparable.S_binable with type t := tinclude Core_kernel__.Comparable_intf.S_commoninclude Base.Comparable.Sinclude Base__.Comparable_intf.Polymorphic_compareascending is identical to compare. descending x y = ascending y x. These are
intended to be mnemonic when used like List.sort ~compare:ascending and List.sort
~cmp:descending, since they cause the list to be sorted in ascending or descending
order, respectively.
clamp_exn t ~min ~max returns t', the closest value to t such that
between t' ~low:min ~high:max is true.
Raises if not (min <= max).
val clamp : t ‑> min:t ‑> max:t ‑> t Base.Or_error.tinclude Base.Comparator.S with type t := tval comparator : (t, comparator_witness) Base.Comparator.comparatorinclude Base__.Comparable_intf.Validate with type t := tval validate_lbound : min:t Base.Maybe_bound.t ‑> t Base.Validate.checkval validate_ubound : max:t Base.Maybe_bound.t ‑> t Base.Validate.checkval validate_bound : min:t Base.Maybe_bound.t ‑> max:t Base.Maybe_bound.t ‑> t Base.Validate.checkmodule Replace_polymorphic_compare : Core_kernel__.Comparable_intf.Polymorphic_compare with type t := tinclude Core_kernel__.Comparable_intf.Map_and_set_binable with type t := t with type comparator_witness := comparator_witnessinclude Core_kernel.Comparator.S with type t := tval comparator : (t, comparator_witness) Core_kernel.Comparator.comparatormodule Map : Core_kernel.Map.S_binable with type Key.t = t with type Key.comparator_witness = comparator_witnessmodule Set : Core_kernel.Set.S_binable with type Elt.t = t with type Elt.comparator_witness = comparator_witnessinclude Core_kernel.Hashable.S_binable with type t := tinclude sig ... endval hash_fold_t : Base.Hash.state ‑> t ‑> Base.Hash.stateval hash : t ‑> Base.Hash.hash_valueval hashable : t Core_kernel.Hashtbl.Hashable.tmodule Table : Core_kernel.Hashtbl.S_binable with type key = tmodule Hash_set : Core_kernel.Hash_set.S_binable with type elt = tmodule Hash_queue : Core_kernel.Hash_queue.S with type Key.t = tinclude Core_kernel.Quickcheckable.S_int with type t := tgen_incl lower_bound upper_bound produces values between lower_bound and
upper_bound, inclusive. It uses an ad hoc distribution that stresses boundary
conditions more often than a uniform distribution, while still able to produce any
value in the range. Raises if lower_bound > upper_bound.
gen_uniform_incl lower_bound upper_bound produces a generator for values uniformly
distributed between lower_bound and upper_bound, inclusive. Raises if
lower_bound > upper_bound.
include Base.Int.S_unbounded with type t := t with type comparator_witness := comparator_witness with module Hex := Hexinclude sig ... endval hash_fold_t : Base.Hash.state ‑> t ‑> Base.Hash.stateval hash : t ‑> Base.Hash.hash_valueval t_of_sexp : Base.Sexp.t ‑> tval sexp_of_t : t ‑> Base.Sexp.tinclude Base.Identifiable.S with type t := tinclude sig ... endval hash_fold_t : Base.Hash.state ‑> t ‑> Base.Hash.stateval hash : t ‑> Base.Hash.hash_valueval t_of_sexp : Base.Sexp.t ‑> tval sexp_of_t : t ‑> Base.Sexp.tinclude Base.Comparable.S with type t := tinclude Base__.Comparable_intf.Polymorphic_compareascending is identical to compare. descending x y = ascending y x. These are
intended to be mnemonic when used like List.sort ~compare:ascending and List.sort
~cmp:descending, since they cause the list to be sorted in ascending or descending
order, respectively.
clamp_exn t ~min ~max returns t', the closest value to t such that
between t' ~low:min ~high:max is true.
Raises if not (min <= max).
val clamp : t ‑> min:t ‑> max:t ‑> t Base.Or_error.tinclude Base.Comparator.S with type t := tval comparator : (t, comparator_witness) Base.Comparator.comparatorinclude Base__.Comparable_intf.Validate with type t := tval validate_lbound : min:t Base.Maybe_bound.t ‑> t Base.Validate.checkval validate_ubound : max:t Base.Maybe_bound.t ‑> t Base.Validate.checkval validate_bound : min:t Base.Maybe_bound.t ‑> max:t Base.Maybe_bound.t ‑> t Base.Validate.checkinclude Base.Comparable.With_zero with type t := tval validate_positive : t Base.Validate.checkval validate_non_negative : t Base.Validate.checkval validate_negative : t Base.Validate.checkval validate_non_positive : t Base.Validate.checkval is_positive : t ‑> boolval is_non_negative : t ‑> boolval is_negative : t ‑> boolval is_non_positive : t ‑> boolval sign : t ‑> Base__.Sign0.tReturns Neg, Zero, or Pos in a way consistent with the above functions.
val zero : tval one : tval minus_one : tNegation
There are two pairs of integer division and remainder functions, /% and %, and
/ and rem. They both satisfy the same equation relating the quotient and the
remainder:
x = (x /% y) * y + (x % y);
x = (x / y) * y + (rem x y);The functions return the same values if x and y are positive. They all raise
if y = 0.
The functions differ if x < 0 or y < 0.
If y < 0, then % and /% raise, whereas / and rem do not.
x % y always returns a value between 0 and y - 1, even when x < 0. On the
other hand, rem x y returns a negative value if and only if x < 0; that value
satisfies abs (rem x y) <= abs y - 1.
include Base__.Int_intf.Round with type t := tround rounds an int to a multiple of a given to_multiple_of argument, according
to a direction dir, with default dir being `Nearest. round will raise if
to_multiple_of <= 0.
| `Down | rounds toward Int.neg_infinity |
| `Up | rounds toward Int.infinity |
| `Nearest | rounds to the nearest multiple, or `Up in case of a tie |
| `Zero | rounds toward zero |Here are some examples for round ~to_multiple_of:10 for each direction:
| `Down | {10 .. 19} --> 10 | { 0 ... 9} --> 0 | {-10 ... -1} --> -10 |
| `Up | { 1 .. 10} --> 10 | {-9 ... 0} --> 0 | {-19 .. -10} --> -10 |
| `Zero | {10 .. 19} --> 10 | {-9 ... 9} --> 0 | {-19 .. -10} --> -10 |
| `Nearest | { 5 .. 14} --> 10 | {-5 ... 4} --> 0 | {-15 ... -6} --> -10 |For convenience and performance, there are variants of round with dir
hard-coded. If you are writing performance-critical code you should use these.
pow base exponent returns base raised to the power of exponent. It is OK if
base <= 0. pow raises if exponent < 0, or an integer overflow would occur.
The results are unspecified for negative shifts and shifts >= num_bits.
val decr : t Base__.Import.ref ‑> unitval incr : t Base__.Import.ref ‑> unitval of_int32_exn : int32 ‑> tval to_int32_exn : t ‑> int32val of_int64_exn : int64 ‑> tval to_int64 : t ‑> int64val of_nativeint_exn : nativeint ‑> tval to_nativeint_exn : t ‑> nativeintval of_float_unchecked : float ‑> tof_float_unchecked truncates the given floating point number to an integer,
rounding towards zero.
The result is unspecified if the argument is nan or falls outside the range
of representable integers.
module O : Base__.Int_intf.Operators_unbounded with type t := tA sub-module designed to be opened to make working with ints more convenient.
val to_int64_exn : t ‑> Core_kernel.Int64.tval to_int : t ‑> int optionval to_int32 : t ‑> Core_kernel.Int32.t optionval to_int64 : t ‑> Core_kernel.Int64.t optionval to_nativeint : t ‑> nativeint optionval of_int : int ‑> tval of_int32 : Core_kernel.Int32.t ‑> tval of_int64 : Core_kernel.Int64.t ‑> tval of_nativeint : nativeint ‑> tval to_zarith_bigint : t ‑> Bigint__.Zarith.Z.tval of_zarith_bigint : Bigint__.Zarith.Z.t ‑> tval random : ?state:Core_kernel.Random.State.t ‑> t ‑> trandom t produces a value uniformly distributed between zero (inclusive) and
t (exclusive), or raises if t <= zero.
val gen_positive : t Core_kernel.Quickcheck.Generator.tval gen_negative : t Core_kernel.Quickcheck.Generator.tmodule Stable : sig ... end