include Base__.Int_intf.Int_without_module_types
include Base__.Int_intf.S with type t = int
include sig ... end
val hash_fold_t : Base.Hash.state ‑> t ‑> Base.Hash.state
val hash : t ‑> Base.Hash.hash_value
val t_of_sexp : Base.Sexp.t ‑> t
val sexp_of_t : t ‑> Base.Sexp.t
include Base.Identifiable.S with type t := t
include sig ... end
val hash_fold_t : Base.Hash.state ‑> t ‑> Base.Hash.state
val hash : t ‑> Base.Hash.hash_value
val t_of_sexp : Base.Sexp.t ‑> t
val sexp_of_t : t ‑> Base.Sexp.t
include Base.Comparable.S with type t := t
include Base__.Comparable_intf.Polymorphic_compare
ascending
is identical to compare
. descending x y = ascending y x
. These are
intended to be mnemonic when used like List.sort ~compare:ascending
and List.sort
~cmp:descending
, since they cause the list to be sorted in ascending or descending
order, respectively.
clamp_exn t ~min ~max
returns t'
, the closest value to t
such that
between t' ~low:min ~high:max
is true.
Raises if not (min <= max)
.
val clamp : t ‑> min:t ‑> max:t ‑> t Base.Or_error.t
include Base.Comparator.S with type t := t
val comparator : (t, comparator_witness) Base.Comparator.comparator
include Base__.Comparable_intf.Validate with type t := t
val validate_lbound : min:t Base.Maybe_bound.t ‑> t Base.Validate.check
val validate_ubound : max:t Base.Maybe_bound.t ‑> t Base.Validate.check
val validate_bound : min:t Base.Maybe_bound.t ‑> max:t Base.Maybe_bound.t ‑> t Base.Validate.check
include Base.Comparable.With_zero with type t := t
val validate_positive : t Base.Validate.check
val validate_non_negative : t Base.Validate.check
val validate_negative : t Base.Validate.check
val validate_non_positive : t Base.Validate.check
val is_positive : t ‑> bool
val is_non_negative : t ‑> bool
val is_negative : t ‑> bool
val is_non_positive : t ‑> bool
val sign : t ‑> Base__.Sign0.t
Returns Neg
, Zero
, or Pos
in a way consistent with the above functions.
val zero : t
val one : t
val minus_one : t
Negation
There are two pairs of integer division and remainder functions, /%
and %
, and
/
and rem
. They both satisfy the same equation relating the quotient and the
remainder:
x = (x /% y) * y + (x % y);
x = (x / y) * y + (rem x y);
The functions return the same values if x
and y
are positive. They all raise
if y = 0
.
The functions differ if x < 0
or y < 0
.
If y < 0
, then %
and /%
raise, whereas /
and rem
do not.
x % y
always returns a value between 0 and y - 1
, even when x < 0
. On the
other hand, rem x y
returns a negative value if and only if x < 0
; that value
satisfies abs (rem x y) <= abs y - 1
.
include Base__.Int_intf.Round with type t := t
round
rounds an int to a multiple of a given to_multiple_of
argument, according
to a direction dir
, with default dir
being `Nearest
. round
will raise if
to_multiple_of <= 0
.
| `Down | rounds toward Int.neg_infinity | | `Up | rounds toward Int.infinity | | `Nearest | rounds to the nearest multiple, or `Up in case of a tie | | `Zero | rounds toward zero |
Here are some examples for round ~to_multiple_of:10
for each direction:
| `Down | {10 .. 19} --> 10 | { 0 ... 9} --> 0 | {-10 ... -1} --> -10 | | `Up | { 1 .. 10} --> 10 | {-9 ... 0} --> 0 | {-19 .. -10} --> -10 | | `Zero | {10 .. 19} --> 10 | {-9 ... 9} --> 0 | {-19 .. -10} --> -10 | | `Nearest | { 5 .. 14} --> 10 | {-5 ... 4} --> 0 | {-15 ... -6} --> -10 |
For convenience and performance, there are variants of round
with dir
hard-coded. If you are writing performance-critical code you should use these.
pow base exponent
returns base
raised to the power of exponent
. It is OK if
base <= 0
. pow
raises if exponent < 0
, or an integer overflow would occur.
The results are unspecified for negative shifts and shifts >= num_bits
.
val decr : t Base__.Import.ref ‑> unit
val incr : t Base__.Import.ref ‑> unit
val of_int32_exn : int32 ‑> t
val to_int32_exn : t ‑> int32
val of_int64_exn : int64 ‑> t
val to_int64 : t ‑> int64
val of_nativeint_exn : nativeint ‑> t
val to_nativeint_exn : t ‑> nativeint
val of_float_unchecked : float ‑> t
of_float_unchecked
truncates the given floating point number to an integer,
rounding towards zero.
The result is unspecified if the argument is nan or falls outside the range
of representable integers.
val num_bits : int
The number of bits available in this integer type. Note that the integer representations are signed.
module O : Base__.Int_intf.Operators with type t := t
A sub-module designed to be opened to make working with ints more convenient.
val max_value_30_bits : t
max_value_30_bits = 2^30 - 1
. It is useful for writing tests that work on both
64-bit and 32-bit platforms.
val ceil_pow2 : int ‑> int
ceil_pow2 x
returns the smallest power of 2 that is greater than or equal to x
.
The implementation may only be called for x > 0
. Example: ceil_pow2 17 = 32
val floor_pow2 : int ‑> int
floor_pow2 x
returns the largest power of 2 that is less than or equal to x
. The
implementation may only be called for x > 0
. Example: floor_pow2 17 = 16
val of_int : int ‑> t
val to_int : t ‑> int
val of_int32 : int32 ‑> t option
val to_int32 : t ‑> int32 option
val of_int64 : int64 ‑> t option
val of_nativeint : nativeint ‑> t option
val to_nativeint : t ‑> nativeint
These functions return the least-significant bits of the input. In cases
where optional conversions return Some x
, truncating conversions return x
.
val of_int32_trunc : int32 ‑> t
val to_int32_trunc : t ‑> int32
val of_int64_trunc : int64 ‑> t
val of_nativeint_trunc : nativeint ‑> t
module type Operators = Base__.Int_intf.Operators
module type Operators_unbounded = Base__.Int_intf.Operators_unbounded
module type Round = Base__.Int_intf.Round
module type S = Base__.Int_intf.S
module type S_common = Base__.Int_intf.S_common
module type S_unbounded = Base__.Int_intf.S_unbounded