Module Ecaml.Input_event

(Info-goto-node "(elisp)Input Events")

type t = Ecaml__.Input_event0.t
include sig ... end
val sexp_of_t : t ‑> Sexplib.Sexp.t
include Value.Subtype with type t := t
type value
type 'a type_
type t = private value

We expose private value for free identity conversions when the value is nested in some covariant type, e.g. (symbols : Symbol.t list :> Value.t list) rather than List.map symbols ~f:Symbol.to_value.

include sig ... end
val sexp_of_t : t ‑> Sexplib.Sexp.t
val of_value_exn : value ‑> t
val to_value : t ‑> value
val eq : t ‑> t ‑> bool

eq t1 t2 = Value.eq (to_value t1) (to_value t2), i.e. eq checks whether the Emacs values underlying t1 and t2 are physically equal. This is different than phys_equal t1 t2, because we don't always wrap eq Emacs values in phys_equal OCaml values. I.e. phys_equal t1 t2 implies eq t1 t2, but not the converse.

val type_ : t type_
val create_exn : string ‑> t
val description : t ‑> string

(describe-function 'single-key-description)(Info-goto-node "(elisp)Describing Characters")

val read : unit ‑> t

(describe-function 'read-event)(Info-goto-node "(elisp)Reading One Event")

module Basic : sig ... end
val basic : t ‑> Basic.t

(describe-function 'event-basic-type)(Info-goto-node "(elisp)Classifying Events")

module Modifier : sig ... end
val modifiers : t ‑> Modifier.t list

(describe-function 'event-modifiers)(Info-goto-node "(elisp)Classifying Events")

val unread_command_input : t list Var.t

(describe-variable 'unread-command-events)(Info-goto-node "(elisp)Event Input Misc")

val enqueue_unread_command_input : t list ‑> unit