Module Core_kernel.Hashtbl

Hashtbl is a reimplementation of the standard MoreLabels.Hashtbl. Its worst case time complexity is O(log(N)) for lookups and additions, unlike the standard MoreLabels.Hashtbl, which is O(N).

A hash table is implemented as an array of AVL trees (see Avltree). If growth_allowed (default true) is false then size is the final size of the array; the table can always hold more elements than size, but they will all go into tree nodes. If it is true (default) then the array will double in size when the number of elements in the table reaches twice the size of the array. When this happens, all existing elements will be reinserted, which can take a long time. If you care about latency, set size and growth_allowed=false if possible.

In most cases, functions passed as arguments to hash table accessors must not mutate the hash table while it is being accessed, as this will result in an exception. For example, iter and change take a function f which must not modify t. In a few cases, mutation is allowed, such as in Hashtbl.find_and_call, where all access to t is finished before the ~if_found and ~if_not_found arguments are invoked.

We have three kinds of hash table modules:

There are three kinds of hash-table functions:

Here is a table showing what classes of functions are available in each kind of hash-table module:

                   creation     sexp-conv   accessors
    Hashtbl                                   X
    Hashtbl.Poly      X           X
    Key.Table         X           X           X'

The entry marked with X' is there for historical reasons, and may be eliminated at some point. The upshot is that one should use Hashtbl for accessors, Hashtbl.Poly for hash-table creation and sexp conversion using polymorphic compare/hash, and Key.Table for hash-table creation and sexp conversion using Key.compare and Key.hash.

Usage

For many students of OCaml, using hashtables is complicated by the functors. Here are a few tips:

  1. For a list of hashtable functions see Core_kernel.Hashtbl_intf.S.
  2. To create a hashtable with string keys use String.Table:

          let table = String.Table.create () ~size:4 in
          List.iter ~f:(fun (key, data) -> Hashtbl.set table ~key ~data)
            [ ("A", 1); ("B", 2); ("C", 3); ];
          Hashtbl.find table "C"

    Here 4 need only be a guess at the hashtable's future size. There are other similar pre-made hashtables, e.g., Int63.Table or Host_and_port.Table.

  3. To create a hashtable with a custom key type use Hashable:

          module Key = struct
            module T = struct
              type t = String.t * Int63.t [@@deriving compare, hash, sexp]
            end
            include T
            include Hashable.Make (T)
          end
          let table = Key.Table.create () ~size:4 in
          List.iter ~f:(fun (key, data) -> Hashtbl.set table ~key ~data)
            [ (("pi", Int63.zero), 3.14159);
              (("e", Int63.minus_one), 2.71828);
              (("Euler", Int63.one), 0.577215);
            ];
          Hashtbl.find table ("pi", Int63.zero)

    Performance may improve if you define equal and hash explicitly, e.g.:

          let equal (x, y) (x', y') = String.(=) x x' && Int63.(=) y y'
          let hash (x, y) = String.hash x + Int63.hash y * 65599
include Hashtbl_intf.Hashtbl with type ('a, 'b) t = ('a'bBase.Hashtbl.t
val hash : 'a ‑> int
val hash_param : int ‑> int ‑> 'a ‑> int
type ('a, 'b) t

We use [@@deriving_inline sexp_of][@@@end] but not [@@deriving sexp] because we want people to be explicit about the hash and comparison functions used when creating hashtables. One can use Hashtbl.Poly.t, which does have [@@deriving_inline sexp][@@@end], to use polymorphic comparison and hashing.

include sig ... end
val sexp_of_t : ('a ‑> Base.Sexp.t) ‑> ('b ‑> Base.Sexp.t) ‑> ('a'bt ‑> Base.Sexp.t
include Base.Invariant.S2 with type (a, b) t := (a, b) t
type ('a, 'b) t
include Hashtbl_intf.Hashtbl_intf.Creators with type (a, b) t := (a, b) t with type 'a key = 'a with type (a, b, z) create_options := (a, b, z) Hashtbl_intf.Hashtbl_intf.create_options_with_first_class_module
type ('a, 'b) t
type 'a key = 'a
type ('key, 'data, 'z) create_options
val create : ('a key'b, unit ‑> ('a'btcreate_options
val of_alist : ('a key'b, ('a key * 'b) list ‑> [ `Ok of ('a'bt | `Duplicate_key of 'a key ]) create_options
val of_alist_report_all_dups : ('a key'b, ('a key * 'b) list ‑> [ `Ok of ('a'bt | `Duplicate_keys of 'a key list ]) create_options
val of_alist_or_error : ('a key'b, ('a key * 'b) list ‑> ('a'bt Base.Or_error.tcreate_options
val of_alist_exn : ('a key'b, ('a key * 'b) list ‑> ('a'btcreate_options
val of_alist_multi : ('a key'b list, ('a key * 'b) list ‑> ('a'b list) tcreate_options
val create_mapped : ('a key'b, get_key:('r ‑> 'a key) ‑> get_data:('r ‑> 'b) ‑> 'r list ‑> [ `Ok of ('a'bt | `Duplicate_keys of 'a key list ]) create_options
create_mapped get_key get_data [x1,...,xn]
         = of_alist [get_key x1, get_data x1; ...; get_key xn, get_data xn]
val create_with_key : ('a key'r, get_key:('r ‑> 'a key) ‑> 'r list ‑> [ `Ok of ('a'rt | `Duplicate_keys of 'a key list ]) create_options
create_with_key ~get_key [x1,...,xn]
         = of_alist [get_key x1, x1; ...; get_key xn, xn]
val create_with_key_or_error : ('a key'r, get_key:('r ‑> 'a key) ‑> 'r list ‑> ('a'rt Base.Or_error.tcreate_options
val create_with_key_exn : ('a key'r, get_key:('r ‑> 'a key) ‑> 'r list ‑> ('a'rtcreate_options
val group : ('a key'b, get_key:('r ‑> 'a key) ‑> get_data:('r ‑> 'b) ‑> combine:('b ‑> 'b ‑> 'b) ‑> 'r list ‑> ('a'btcreate_options
include Hashtbl_intf.Hashtbl_intf.Accessors with type (a, b) t := (a, b) t with type key := a key
type ('a, 'b) t
type 'a key
val sexp_of_key : ('a_t ‑> 'a key ‑> Base.Sexp.t
val clear : (__t ‑> unit
val copy : ('a'bt ‑> ('a'bt
val fold : ('a'bt ‑> init:'c ‑> f:(key:'a key ‑> data:'b ‑> 'c ‑> 'c) ‑> 'c

Attempting to modify (set, remove, etc.) the hashtable during iteration (fold, iter, iter_keys, iteri) will raise an exception.

val iter_keys : ('a_t ‑> f:('a key ‑> unit) ‑> unit
val iter : (_'bt ‑> f:('b ‑> unit) ‑> unit
val iteri : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> unit) ‑> unit
val existsi : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> bool) ‑> bool
val exists : (_'bt ‑> f:('b ‑> bool) ‑> bool
val for_alli : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> bool) ‑> bool
val for_all : (_'bt ‑> f:('b ‑> bool) ‑> bool
val counti : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> bool) ‑> int
val count : (_'bt ‑> f:('b ‑> bool) ‑> int
val length : (__t ‑> int
val is_empty : (__t ‑> bool
val mem : ('a_t ‑> 'a key ‑> bool
val remove : ('a_t ‑> 'a key ‑> unit
val set : ('a'bt ‑> key:'a key ‑> data:'b ‑> unit
val add : ('a'bt ‑> key:'a key ‑> data:'b ‑> [ `Ok | `Duplicate ]

add and add_exn leave the table unchanged if the key was already present.

val add_exn : ('a'bt ‑> key:'a key ‑> data:'b ‑> unit
val change : ('a'bt ‑> 'a key ‑> f:('b option ‑> 'b option) ‑> unit

change t key ~f changes t's value for key to be f (find t key).

val update : ('a'bt ‑> 'a key ‑> f:('b option ‑> 'b) ‑> unit

update t key ~f is change t key ~f:(fun o -> Some (f o)).

val map : ('a'bt ‑> f:('b ‑> 'c) ‑> ('a'ct

map t f returns new table with bound values replaced by f applied to the bound values

val mapi : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> 'c) ‑> ('a'ct

like map, but function takes both key and data as arguments

val filter_map : ('a'bt ‑> f:('b ‑> 'c option) ‑> ('a'ct

returns new table with bound values filtered by f applied to the bound values

val filter_mapi : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> 'c option) ‑> ('a'ct

like filter_map, but function takes both key and data as arguments

val filter_keys : ('a'bt ‑> f:('a key ‑> bool) ‑> ('a'bt
val filter : ('a'bt ‑> f:('b ‑> bool) ‑> ('a'bt
val filteri : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> bool) ‑> ('a'bt
val partition_map : ('a'bt ‑> f:('b ‑> [ `Fst of 'c | `Snd of 'd ]) ‑> ('a'ct * ('a'dt

returns new tables with bound values partitioned by f applied to the bound values

val partition_mapi : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> [ `Fst of 'c | `Snd of 'd ]) ‑> ('a'ct * ('a'dt

like partition_map, but function takes both key and data as arguments

val partition_tf : ('a'bt ‑> f:('b ‑> bool) ‑> ('a'bt * ('a'bt

returns a pair of tables (t1, t2), where t1 contains all the elements of the initial table which satisfy the predicate f, and t2 contains all the elements which do not satisfy f.

val partitioni_tf : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> bool) ‑> ('a'bt * ('a'bt

like partition_tf, but function takes both key and data as arguments

val find_or_add : ('a'bt ‑> 'a key ‑> default:(unit ‑> 'b) ‑> 'b

find_or_add t k ~default returns the data associated with key k if it is in the table t, otherwise it lets d = default() and adds it to the table.

val find : ('a'bt ‑> 'a key ‑> 'b option

find t k returns Some (the current binding) of k in t, or None if no such binding exists

val find_exn : ('a'bt ‑> 'a key ‑> 'b

find_exn t k returns the current binding of k in t, or raises Not_found if no such binding exists.

val find_and_call : ('a'bt ‑> 'a key ‑> if_found:('b ‑> 'c) ‑> if_not_found:('a key ‑> 'c) ‑> 'c

find_and_call t k ~if_found ~if_not_found

is equivalent to:

match find t k with Some v -> if_found v | None -> if_not_found k

except that it doesn't allocate the option.

val find_and_remove : ('a'bt ‑> 'a key ‑> 'b option

find_and_remove t k returns Some (the current binding) of k in t and removes it, or None is no such binding exists

val merge : ('k'at ‑> ('k'bt ‑> f:(key:'k key ‑> [ `Left of 'a | `Right of 'b | `Both of 'a * 'b ] ‑> 'c option) ‑> ('k'ct

Merge two hashtables.

The result of merge f h1 h2 has as keys the set of all k in the union of the sets of keys of h1 and h2 for which d(k) is not None, where:

d(k) =

  • f ~key:k (Some d1) None if k in h1 is to d1, and h2 does not map k;
  • f ~key:k None (Some d2) if k in h2 is to d2, and h1 does not map k;
  • f ~key:k (Some d1) (Some d2) otherwise, where k in h1 is to d1 and k in h2 is to d2.

Each key k is mapped to a single piece of data x, where d(k) = Some x.

type 'a merge_into_action =
| Remove
| Set_to of 'a

Every key in src will be removed or set in dst according to the return value of f.

val merge_into : src:('k'at ‑> dst:('k'bt ‑> f:(key:'k key ‑> 'a ‑> 'b option ‑> 'b merge_into_action) ‑> unit
val keys : ('a_t ‑> 'a key list

Returns the list of all keys for given hashtable.

val data : (_'bt ‑> 'b list

Returns the list of all data for given hashtable.

val filter_keys_inplace : ('a_t ‑> f:('a key ‑> bool) ‑> unit

filter_inplace t ~f removes all the elements from t that don't satisfy f.

val filter_inplace : (_'bt ‑> f:('b ‑> bool) ‑> unit
val filteri_inplace : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> bool) ‑> unit
val map_inplace : (_'bt ‑> f:('b ‑> 'b) ‑> unit

map_inplace t ~f applies f to all elements in t, transforming them in place

val mapi_inplace : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> 'b) ‑> unit
val filter_map_inplace : (_'bt ‑> f:('b ‑> 'b option) ‑> unit

filter_map_inplace combines the effects of map_inplace and filter_inplace

val filter_mapi_inplace : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> 'b option) ‑> unit
val equal : ('a'bt ‑> ('a'bt ‑> ('b ‑> 'b ‑> bool) ‑> bool

equal t1 t2 f and similar t1 t2 f both return true iff t1 and t2 have the same keys and for all keys k, f (find_exn t1 k) (find_exn t2 k). equal and similar only differ in their types.

val similar : ('a'b1t ‑> ('a'b2t ‑> ('b1 ‑> 'b2 ‑> bool) ‑> bool
val to_alist : ('a'bt ‑> ('a key * 'b) list

Returns the list of all (key,data) pairs for given hashtable.

val validate : name:('a key ‑> string) ‑> 'b Base.Validate.check ‑> ('a'bt Base.Validate.check
val incr : ?⁠by:int ‑> ?⁠remove_if_zero:bool ‑> ('a, int) t ‑> 'a key ‑> unit

remove_if_zero's default is false.

val decr : ?⁠by:int ‑> ?⁠remove_if_zero:bool ‑> ('a, int) t ‑> 'a key ‑> unit
include Hashtbl_intf.Hashtbl_intf.Multi with type (a, b) t := (a, b) t with type key := a key
type ('a, 'b) t
type 'a key
val add_multi : ('a'b list) t ‑> key:'a key ‑> data:'b ‑> unit

add_multi t ~key ~data if key is present in the table then cons data on the list, otherwise add key with a single element list.

val remove_multi : ('a_ list) t ‑> 'a key ‑> unit

remove_multi t key updates the table, removing the head of the list bound to key. If the list has only one element (or is empty) then the binding is removed.

val find_multi : ('a'b list) t ‑> 'a key ‑> 'b list

find_multi t key returns the empty list if key is not present in the table, returns t's values for key otherwise

include Hashtbl_intf.Hashtbl_intf.Deprecated with type (a, b) t := (a, b) t with type key := a key
type ('key, 'data) t
type 'key key
val iter_vals : (_'bt ‑> f:('b ‑> unit) ‑> unit
val replace : ('a'bt ‑> key:'a key ‑> data:'b ‑> unit
val replace_all : (_'bt ‑> f:('b ‑> 'b) ‑> unit
val replace_alli : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> 'b) ‑> unit
val filter_replace_all : (_'bt ‑> f:('b ‑> 'b option) ‑> unit
val filter_replace_alli : ('a'bt ‑> f:(key:'a key ‑> data:'b ‑> 'b option) ‑> unit
val hashable : ('key_t ‑> 'key Hashable.t
module Using_hashable : sig ... end
module Poly : sig ... end
module type Key = Hashtbl_intf.Key
module type S_plain : Hashtbl_intf.S_plain with type ('a, 'b) hashtbl = ('a'bt
module type S : Hashtbl_intf.S with type ('a, 'b) hashtbl = ('a'bt
module type S_binable : Hashtbl_intf.S_binable with type ('a, 'b) hashtbl = ('a'bt
module Make_plain : functor (Key : Key_plain) -> S_plain with type key = Key.t
module Make : functor (Key : Key) -> S with type key = Key.t
module Make_binable : functor (Key : Key_binable) -> S_binable with type key = Key.t