Module Core_kernel.Gc.Stat

type t = {
minor_words : Core_kernel__.Import.float;

(** Number of words allocated in the minor heap since the program was started. This number is accurate in byte-code programs, but only an approximation in programs compiled to native code. *)

promoted_words : Core_kernel__.Import.float;

(** Number of words allocated in the minor heap that survived a minor collection and were moved to the major heap since the program was started. *)

major_words : Core_kernel__.Import.float;

(** Number of words allocated in the major heap, including the promoted words, since the program was started. *)

minor_collections : Core_kernel__.Import.int;

(** Number of minor collections since the program was started. *)

major_collections : Core_kernel__.Import.int;

(** Number of major collection cycles completed since the program was started. *)

heap_words : Core_kernel__.Import.int;

(** Total size of the major heap, in words. *)

heap_chunks : Core_kernel__.Import.int;

(** Number of contiguous pieces of memory that make up the major heap. *)

live_words : Core_kernel__.Import.int;

(** Number of words of live data in the major heap, including the header words. *)

live_blocks : Core_kernel__.Import.int;

(** Number of live blocks in the major heap. *)

free_words : Core_kernel__.Import.int;

(** Number of words in the free list. *)

free_blocks : Core_kernel__.Import.int;

(** Number of blocks in the free list. *)

largest_free : Core_kernel__.Import.int;

(** Size (in words) of the largest block in the free list. *)

fragments : Core_kernel__.Import.int;

(** Number of wasted words due to fragmentation. These are 1-words free blocks placed between two live blocks. They are not available for allocation. *)

compactions : Core_kernel__.Import.int;

(** Number of heap compactions since the program was started. *)

top_heap_words : Core_kernel__.Import.int;

(** Maximum size reached by the major heap, in words. *)

stack_size : Core_kernel__.Import.int;

(** Current size of the stack, in words. *)

}
include sig ... end
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (Core_kernel__.Import.int ‑> t) Bin_prot.Read.reader
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_shape_t : Bin_prot.Shape.t
val t_of_sexp : Sexplib.Sexp.t ‑> t
val sexp_of_t : t ‑> Sexplib.Sexp.t
val stack_size : t ‑> Core_kernel__.Import.int
val top_heap_words : t ‑> Core_kernel__.Import.int
val compactions : t ‑> Core_kernel__.Import.int
val fragments : t ‑> Core_kernel__.Import.int
val largest_free : t ‑> Core_kernel__.Import.int
val free_blocks : t ‑> Core_kernel__.Import.int
val free_words : t ‑> Core_kernel__.Import.int
val live_blocks : t ‑> Core_kernel__.Import.int
val live_words : t ‑> Core_kernel__.Import.int
val heap_chunks : t ‑> Core_kernel__.Import.int
val heap_words : t ‑> Core_kernel__.Import.int
val major_collections : t ‑> Core_kernel__.Import.int
val minor_collections : t ‑> Core_kernel__.Import.int
val major_words : t ‑> Core_kernel__.Import.float
val promoted_words : t ‑> Core_kernel__.Import.float
val minor_words : t ‑> Core_kernel__.Import.float
module Fields : sig ... end
include Comparable.S with type t := t
include Core_kernel__.Comparable_intf.S_common
include Base.Comparable_intf.S
include Base.Comparable_intf.Polymorphic_compare
include Base.Comparisons.Infix
type t
val (>=) : t ‑> t ‑> bool
val (<=) : t ‑> t ‑> bool
val (=) : t ‑> t ‑> bool
val (>) : t ‑> t ‑> bool
val (<) : t ‑> t ‑> bool
val (<>) : t ‑> t ‑> bool
val equal : t ‑> t ‑> bool
val compare : t ‑> t ‑> int

compare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.

val min : t ‑> t ‑> t
val max : t ‑> t ‑> t
val ascending : t ‑> t ‑> int

ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~cmp:ascending and List.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.

val descending : t ‑> t ‑> int
val between : t ‑> low:t ‑> high:t ‑> bool
val clamp_exn : t ‑> min:t ‑> max:t ‑> t

clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.

Raises if not (min <= max).

val clamp : t ‑> min:t ‑> max:t ‑> t Base.Or_error.t
include Base.Comparator.S with type t := t
type t
type comparator_witness
include Base.Comparable_intf.Validate with type t := t
type t
val validate_lbound : min:t Base.Maybe_bound.t ‑> t Base.Validate.check
val validate_ubound : max:t Base.Maybe_bound.t ‑> t Base.Validate.check
val validate_bound : min:t Base.Maybe_bound.t ‑> max:t Base.Maybe_bound.t ‑> t Base.Validate.check
module Map : Map.S with type Key.t = t with type Key.comparator_witness = comparator_witness
module Set : Set.S with type Elt.t = t with type Elt.comparator_witness = comparator_witness