Boolean expressions.
A blang is a boolean expression built up by applying the usual boolean operations to properties that evaluate to true or false in some context.
For example, imagine writing a config file for an application that filters a stream of
integers. Your goal is to keep only those integers that are multiples of either -3 or
5. Using Blang
for this task, the code might look like:
module Property = struct
type t =
| Multiple_of of int
| Positive
| Negative
[@@deriving sexp]
let eval t num =
match t with
| Multiple_of n -> num % n = 0
| Positive -> num > 0
| Negative -> num < 0
end
type config = {
keep : Property.t Blang.t;
} [@@deriving sexp]
let config = {
keep = Blang.of_string "(or (and negative (multiple_of 3)) \
\ (and positive (multiple_of 5)))";
}
let keep config num : bool =
Blang.eval config.keep (fun p -> Property.eval p num)
Note how positive
and negative
and multiple_of
become operators in a small,
newly-defined boolean expression language that allows you to write statements like
(and negative (multiple_of 3))
.
The blang sexp syntax is almost exactly the derived one, except that:
1. Base properties are not marked explicitly. Thus, if your base property type has elements FOO, BAR, etc., then you could write the following Blang s-expressions:
FOO (and FOO BAR) (if FOO BAR BAZ)
and so on. Note that this gets in the way of using the blang "keywords" in your value language.
2. And
and Or
take a variable number of arguments, so that one can
(and probably should) write
(and FOO BAR BAZ QUX)
instead of
(and FOO (and BAR (and BAZ QUX)))
type 'a t
= private
| True |
| False |
| And of 'a t * 'a t |
| Or of 'a t * 'a t |
| Not of 'a t |
| If of 'a t * 'a t * 'a t |
| Base of 'a |
Note that the sexps are not directly inferred from the type above -- there are lots of
fancy shortcuts. Also, the sexps for 'a
must not look anything like blang sexps.
Otherwise t_of_sexp
will fail.
include sig ... end
val bin_t : 'a Bin_prot.Type_class.t ‑> 'a t Bin_prot.Type_class.t
val bin_read_t : 'a Bin_prot.Read.reader ‑> 'a t Bin_prot.Read.reader
val __bin_read_t__ : 'a Bin_prot.Read.reader ‑> (Core_kernel__.Import.int ‑> 'a t) Bin_prot.Read.reader
val bin_reader_t : 'a Bin_prot.Type_class.reader ‑> 'a t Bin_prot.Type_class.reader
val bin_size_t : 'a Bin_prot.Size.sizer ‑> 'a t Bin_prot.Size.sizer
val bin_write_t : 'a Bin_prot.Write.writer ‑> 'a t Bin_prot.Write.writer
val bin_writer_t : 'a Bin_prot.Type_class.writer ‑> 'a t Bin_prot.Type_class.writer
val bin_shape_t : Bin_prot.Shape.t ‑> Bin_prot.Shape.t
val compare : ('a ‑> 'a ‑> Core_kernel__.Import.int) ‑> 'a t ‑> 'a t ‑> Core_kernel__.Import.int
val hash_fold_t : (Base.Hash.state ‑> 'a ‑> Base.Hash.state) ‑> Base.Hash.state ‑> 'a t ‑> Base.Hash.state
val t_of_sexp : (Sexplib.Sexp.t ‑> 'a) ‑> Sexplib.Sexp.t ‑> 'a t
val sexp_of_t : ('a ‑> Sexplib.Sexp.t) ‑> 'a t ‑> Sexplib.Sexp.t
module type Constructors : sig ... end
module O : sig ... end
val constant_value : 'a t ‑> Core_kernel__.Import.bool Core_kernel__.Import.option
constant_value t = Some b
iff t = constant b
The following two functions are useful when one wants to pretend
that 'a t
has constructors And
and Or
of type 'a t list -> 'a t
.
The pattern of use is
match t with
| And (_, _) as t -> let ts = gather_conjuncts t in ...
| Or (_, _) as t -> let ts = gather_disjuncts t in ...
| ...
or, in case you also want to handle True
(resp. False
) as a special
case of conjunction (disjunction)
match t with
| True | And (_, _) as t -> let ts = gather_conjuncts t in ...
| False | Or (_, _) as t -> let ts = gather_disjuncts t in ...
| ...
val gather_conjuncts : 'a t ‑> 'a t Core_kernel__.Import.list
gather_conjuncts t
gathers up all toplevel conjuncts in t
. For example,
gather_conjuncts (and_ ts) = ts
gather_conjuncts (And (t1, t2)) = gather_conjuncts t1 @ gather_conjuncts t2
gather_conjuncts True = []
gather_conjuncts t = [t]
when t
matches neither And (_, _)
nor True
val gather_disjuncts : 'a t ‑> 'a t Core_kernel__.Import.list
gather_disjuncts t
gathers up all toplevel disjuncts in t
. For example,
gather_disjuncts (or_ ts) = ts
gather_disjuncts (Or (t1, t2)) = gather_disjuncts t1 @ gather_disjuncts t2
gather_disjuncts False = []
gather_disjuncts t = [t]
when t
matches neither Or (_, _)
nor False
include Container.S1 with type a t := a t
val mem : 'a t ‑> 'a ‑> equal:('a ‑> 'a ‑> bool) ‑> bool
Checks whether the provided element is there, using equal
.
val length : 'a t ‑> int
val is_empty : 'a t ‑> bool
val iter : 'a t ‑> f:('a ‑> unit) ‑> unit
val fold : 'a t ‑> init:'accum ‑> f:('accum ‑> 'a ‑> 'accum) ‑> 'accum
fold t ~init ~f
returns f (... f (f (f init e1) e2) e3 ...) en
, where e1..en
are the elements of t
val fold_result : 'a t ‑> init:'accum ‑> f:('accum ‑> 'a ‑> ('accum, 'e) Base.Result.t) ‑> ('accum, 'e) Base.Result.t
fold_result t ~init ~f
is a short-circuiting version of fold
that runs in the
Result
monad. If f
returns an Error _
, that value is returned without any
additional invocations of f
.
val fold_until : 'a t ‑> init:'accum ‑> f:('accum ‑> 'a ‑> ('accum, 'stop) Base.Container_intf.Continue_or_stop.t) ‑> ('accum, 'stop) Base.Container_intf.Finished_or_stopped_early.t
fold_until t ~init ~f
is a short-circuiting version of fold
. If f
returns Stop _
the computation ceases and results in that value. If f
returns
Continue _
, the fold will proceed.
val exists : 'a t ‑> f:('a ‑> bool) ‑> bool
Returns true
if and only if there exists an element for which the provided
function evaluates to true
. This is a short-circuiting operation.
val for_all : 'a t ‑> f:('a ‑> bool) ‑> bool
Returns true
if and only if the provided function evaluates to true
for all
elements. This is a short-circuiting operation.
val count : 'a t ‑> f:('a ‑> bool) ‑> int
Returns the number of elements for which the provided function evaluates to true.
val sum : (module Base.Commutative_group.S with type t = 'sum) ‑> 'a t ‑> f:('a ‑> 'sum) ‑> 'sum
Returns the sum of f i
for all i
in the container.
val find : 'a t ‑> f:('a ‑> bool) ‑> 'a option
Returns as an option
the first element for which f
evaluates to true.
val find_map : 'a t ‑> f:('a ‑> 'b option) ‑> 'b option
Returns the first evaluation of f
that returns Some
, and returns None
if there
is no such element.
val to_list : 'a t ‑> 'a list
val to_array : 'a t ‑> 'a array
val min_elt : 'a t ‑> cmp:('a ‑> 'a ‑> int) ‑> 'a option
Returns a minimum (resp maximum) element from the collection using the provided
cmp
function, or None
if the collection is empty. In case of a tie, the first
element encountered while traversing the collection is returned. The implementation
uses fold
so it has the same complexity as fold
.
val max_elt : 'a t ‑> cmp:('a ‑> 'a ‑> int) ‑> 'a option
Blang.t
sports a substitution monad:
return v
is Base v
(think of v
as a variable)bind t f
replaces every Base v
in t
with f v
(think of v
as a variable and f
as specifying the term to
substitute for each variable)Note: bind t f
does short-circuiting, so f
may not be called on every variable in
t
.
include Core_kernel__.Std_internal.Monad with type a t := a t
include Base__.Monad_intf.S_without_syntax with type a t := a t
type 'a t
A monad is an abstraction of the concept of sequencing of computations. A value of type 'a monad represents a computation that returns a value of type 'a.
include Base__.Monad_intf.Infix with type a t := a t
module Monad_infix : Base__.Monad_intf.Infix with type a t := a t
val values : 'a t ‑> 'a Core_kernel__.Import.list
values t
forms the list containing every v
for which Base v
is a subexpression of t
val eval : 'a t ‑> ('a ‑> Core_kernel__.Import.bool) ‑> Core_kernel__.Import.bool
eval t f
evaluates the proposition t
relative to an environment
f
that assigns truth values to base propositions.
val eval_set : universe:('elt, 'comparator) Set.t Lazy.t ‑> ('a ‑> ('elt, 'comparator) Set.t) ‑> 'a t ‑> ('elt, 'comparator) Set.t
eval_set ~universe set_of_base expression
returns the subset of elements e
in
universe
that satisfy eval expression (fun base -> Set.mem (set_of_base base) e)
.
eval_set
assumes, but does not verify, that set_of_base
always returns a subset of
universe
. If this doesn't hold, then eval_set
's result may contain elements not
in universe
.
And set1 set2
represents the elements that are both in set1
and set2
, thus in
the intersection of the two sets. Symmetrically, Or set1 set2
represents the union
of set1
and set2
.
val specialize : 'a t ‑> ('a ‑> [ `Known of Core_kernel__.Import.bool | `Unknown ]) ‑> 'a t
specialize t f
partially evaluates t
according to a
perhaps-incomplete assignment f
of the values of base propositions.
The following laws (at least partially) characterize its behavior.
specialize t (fun _ -> `Unknown) = t
specialize t (fun x -> `Known (f x)) = constant (eval t f)
List.for_all (values (specialize t g)) ~f:(fun x -> g x = `Unknown)
if
List.for_all (values t) ~f:(fun x ->
match g x with
| `Known b -> b = f x
| `Unknown -> true)
then
eval t f = eval (specialize t g) f
val invariant : 'a t ‑> Core_kernel__.Import.unit
module Stable : sig ... end