type ('k, 'cmp) comparator = (module Base.Comparator.S with type comparator_witness = 'cmp and type t = 'k)val comparator : ('a, _, 'cmp) t ‑> ('a, 'cmp) Base.Comparator.tval of_alist : ('a, 'cmp) comparator ‑> ('a * 'b) list ‑> [ `Ok of ('a, 'b, 'cmp) t | `Duplicate_key of 'a ]creates map from association list with unique keys
val of_alist_or_error : ('a, 'cmp) comparator ‑> ('a * 'b) list ‑> ('a, 'b, 'cmp) t Base.Or_error.tcreates map from association list with unique keys. Returns an error if duplicate 'a keys are found.
val of_alist_exn : ('a, 'cmp) comparator ‑> ('a * 'b) list ‑> ('a, 'b, 'cmp) tcreates map from association list with unique keys. Raises an exception if duplicate 'a keys are found.
val of_alist_multi : ('a, 'cmp) comparator ‑> ('a * 'b) list ‑> ('a, 'b list, 'cmp) tcreates map from association list with possibly repeated keys.
val of_alist_fold : ('a, 'cmp) comparator ‑> ('a * 'b) list ‑> init:'c ‑> f:('c ‑> 'b ‑> 'c) ‑> ('a, 'c, 'cmp) tcombines an association list into a map, folding together bound values with common keys
val of_alist_reduce : ('a, 'cmp) comparator ‑> ('a * 'b) list ‑> f:('b ‑> 'b ‑> 'b) ‑> ('a, 'b, 'cmp) tcombines an association list into a map, reducing together bound values with common keys
val of_iteri : ('a, 'cmp) comparator ‑> iteri:(f:(key:'a ‑> data:'b ‑> unit) ‑> unit) ‑> [ `Ok of ('a, 'b, 'cmp) t | `Duplicate_key of 'a ]of_iteri ~iteri behaves like of_alist, except that instead of taking a concrete
datastruture, it takes an iteration function. For instance, to convert a string table
into a map: of_iteri (module String) ~f:(Hashtbl.iteri table). It is faster than
adding the elements one by one.
val of_sorted_array : ('a, 'cmp) comparator ‑> ('a * 'b) array ‑> ('a, 'b, 'cmp) t Base.Or_error.tcreates map from sorted array of key-data pairs. The input array must be sorted, as given by the relevant comparator (either in ascending or descending order), and must not contain any duplicate keys. If either of these conditions do not hold, an error is returned.
val of_sorted_array_unchecked : ('a, 'cmp) comparator ‑> ('a * 'b) array ‑> ('a, 'b, 'cmp) tLike of_sorted_array except it returns a map with broken invariants when an Error
would have been returned.
val of_increasing_iterator_unchecked : ('a, 'cmp) comparator ‑> len:int ‑> f:(int ‑> 'a * 'b) ‑> ('a, 'b, 'cmp) tof_increasing_iterator_unchecked c ~len ~f behaves like of_sorted_array_unchecked c
(Array.init len ~f), with the additional restriction that a decreasing order is not
supported. The advantage is not requiring you to allocate an intermediate array. f
will be called with 0, 1, ... len - 1, in order.
val of_increasing_sequence : ('k, 'cmp) comparator ‑> ('k * 'v) Base.Sequence.t ‑> ('k, 'v, 'cmp) t Base.Or_error.tof_increasing_sequence c seq behaves like of_sorted_array c (Sequence.to_array seq),
but does not allocate the intermediate array.
The sequence will be folded over once, and the additional time complexity is /O(n)/.
val length : (_, _, _) t ‑> intlength map
map. O(1), but Tree.length is O(n).returns a new map with the specified new binding; if the key was already bound, its previous binding disappears.
if key is not present then add a singleton list, otherwise, cons data on the head of the existing list.
val find_multi : ('k, 'v list, 'cmp) t ‑> 'k ‑> 'v listreturns the value bound to the given key, or the empty list if there is none.
change t key ~f returns a new map m that is the same as t on all keys except for
key, and whose value for key is defined by f, i.e. find m key = f (find t
key).
val find : ('k, 'v, 'cmp) t ‑> 'k ‑> 'v optionreturns the value bound to the given key, raising Not_found if none such exists
val find_exn : ('k, 'v, 'cmp) t ‑> 'k ‑> 'vval iter_keys : ('k, _, _) t ‑> f:('k ‑> unit) ‑> unitval iter : (_, 'v, _) t ‑> f:('v ‑> unit) ‑> unitval iteri : ('k, 'v, _) t ‑> f:(key:'k ‑> data:'v ‑> unit) ‑> unitval iter2 : ('k, 'v1, 'cmp) t ‑> ('k, 'v2, 'cmp) t ‑> f:(key:'k ‑> data:[ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] ‑> unit) ‑> unitIterate two maps side by side. Complexity of this function is O(M+N). If two inputs
are (0, a); (1, a) and (1, b); (2, b), f will be called with (0, `Left a); (1,
`Both (a, b)); (2, `Right b)
val fold : ('k, 'v, _) t ‑> init:'a ‑> f:(key:'k ‑> data:'v ‑> 'a ‑> 'a) ‑> 'afolds over keys and data in map in increasing order of key.
val fold_right : ('k, 'v, _) t ‑> init:'a ‑> f:(key:'k ‑> data:'v ‑> 'a ‑> 'a) ‑> 'afolds over keys and data in map in decreasing order of key.
val fold2 : ('k, 'v1, 'cmp) t ‑> ('k, 'v2, 'cmp) t ‑> init:'a ‑> f:(key:'k ‑> data:[ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] ‑> 'a ‑> 'a) ‑> 'afolds over two maps side by side, like iter2.
filter, filteri, filter_keys, filter_map, and filter_mapi run in O(n * lg n)
time; they simply accumulate each key & data retained by f into a new map using
add.
val partition_mapi : ('k, 'v1, 'cmp) t ‑> f:(key:'k ‑> data:'v1 ‑> [ `Fst of 'v2 | `Snd of 'v3 ]) ‑> ('k, 'v2, 'cmp) t * ('k, 'v3, 'cmp) tpartition_mapi t ~f returns two new ts, with each key in t appearing in exactly
one of the result maps depending on its mapping in f.
val partition_map : ('k, 'v1, 'cmp) t ‑> f:('v1 ‑> [ `Fst of 'v2 | `Snd of 'v3 ]) ‑> ('k, 'v2, 'cmp) t * ('k, 'v3, 'cmp) tpartition_map t ~f = partition_mapi t ~f:(fun ~key:_ ~data -> f data)
val partitioni_tf : ('k, 'v, 'cmp) t ‑> f:(key:'k ‑> data:'v ‑> bool) ‑> ('k, 'v, 'cmp) t * ('k, 'v, 'cmp) t partitioni_tf t ~f
=
partition_mapi t ~f:(fun ~key ~data ->
if f ~key ~data
then `Fst data
else `Snd data)Total ordering between maps. The first argument is a total ordering used to compare data associated with equal keys in the two maps.
val hash_fold_direct : 'k Base.Hash.folder ‑> 'v Base.Hash.folder ‑> ('k, 'v, 'cmp) t Base.Hash.folderHash function: a building block to use when hashing data structures containing
maps in them. hash_fold_direct hash_fold_key is compatible with
compare_direct iff hash_fold_key is compatible with (comparator m).compare
of the map m being hashed.
equal cmp m1 m2 tests whether the maps m1 and m2 are equal, that is, contain
equal keys and associate them with equal data. cmp is the equality predicate used
to compare the data associated with the keys.
val to_alist : ?key_order:[ `Increasing | `Decreasing ] ‑> ('k, 'v, _) t ‑> ('k * 'v) listcreates association list from map.
val validate : name:('k ‑> string) ‑> 'v Base.Validate.check ‑> ('k, 'v, _) t Base.Validate.checkval merge : ('k, 'v1, 'cmp) t ‑> ('k, 'v2, 'cmp) t ‑> f:(key:'k ‑> [ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] ‑> 'v3 option) ‑> ('k, 'v3, 'cmp) tMerges two maps. The runtime is O(length(t1) + length(t2)). In particular,
you shouldn't use this function to merge a list of maps. Consider using
merge_skewed instead.
val merge_skewed : ('k, 'v, 'cmp) t ‑> ('k, 'v, 'cmp) t ‑> combine:(key:'k ‑> 'v ‑> 'v ‑> 'v) ‑> ('k, 'v, 'cmp) tA special case of merge, merge_skewed t1 t2 is a map containing all the
bindings of t1 and t2. Bindings that appear in both t1 and t2 are
combined in to a single value using the combine function. In a call
combine ~key v1 v2 the value v1 comes from t1 and v2 from t2.
The runtime of merge_skewed is O(l1 * log(l2)), where l1 is the length
of the smaller map and l2 the length of the larger map. This is likely to
be faster than merge when one of the maps is a lot smaller, or when you
merge a list of maps.
module Symmetric_diff_element : sig ... endval symmetric_diff : ('k, 'v, 'cmp) t ‑> ('k, 'v, 'cmp) t ‑> data_equal:('v ‑> 'v ‑> bool) ‑> ('k, 'v) Symmetric_diff_element.t Base.Sequence.tsymmetric_diff t1 t2 ~data_equal returns a list of changes between t1 and t2.
It is intended to be efficient in the case where t1 and t2 share a large amount of
structure. The keys in the output sequence will be in sorted order.
val min_elt : ('k, 'v, _) t ‑> ('k * 'v) optionmin_elt map
(key, data) pair corresponding to the minimum key in
map, None if empty.val min_elt_exn : ('k, 'v, _) t ‑> 'k * 'vval max_elt : ('k, 'v, _) t ‑> ('k * 'v) optionmax_elt map
(key, data) pair corresponding to the maximum key in
map, and None if map is empty.val max_elt_exn : ('k, 'v, _) t ‑> 'k * 'vval for_alli : ('k, 'v, _) t ‑> f:(key:'k ‑> data:'v ‑> bool) ‑> boolval exists : ('k, 'v, _) t ‑> f:('v ‑> bool) ‑> boolval existsi : ('k, 'v, _) t ‑> f:(key:'k ‑> data:'v ‑> bool) ‑> boolval count : ('k, 'v, _) t ‑> f:('v ‑> bool) ‑> intval counti : ('k, 'v, _) t ‑> f:(key:'k ‑> data:'v ‑> bool) ‑> intsplit t key returns a map of keys strictly less than key, the mapping of key if
any, and a map of keys strictly greater than key.
Runtime is O(m + log n) where n is the size of the input map, and m is the size of the smaller of the two output maps. The O(m) term is due to the need to calculate the length of the output maps. *
val append : lower_part:('k, 'v, 'cmp) t ‑> upper_part:('k, 'v, 'cmp) t ‑> [ `Ok of ('k, 'v, 'cmp) t | `Overlapping_key_ranges ]append ~lower_part ~upper_part returns `Ok map
where map contains all the (key, value) pairs from the two input maps
if all the keys from lower_part are less than all the keys from upper_part.
Otherwise it returns `Overlapping_key_ranges.
Runtime is O(log n) where n is the size of the larger input map. This can be
significantly faster than Map.merge or repeated Map.add.
assert (match Map.append ~lower_part ~upper_part with
| `Ok whole_map ->
whole_map
= Map.(of_alist_exn (List.append (to_alist lower_part) (to_alist upper_part)))
| `Overlapping_key_ranges -> true);val subrange : ('k, 'v, 'cmp) t ‑> lower_bound:'k Base.Maybe_bound.t ‑> upper_bound:'k Base.Maybe_bound.t ‑> ('k, 'v, 'cmp) tsubrange t ~lower_bound ~upper_bound returns a map containing all the entries from
t whose keys lie inside the interval indicated by ~lower_bound and ~upper_bound.
If this interval is empty, an empty map is returned.
Runtime is O(m + log n) where n is the size of the input map, and m is the size of the output map. The O(m) term is due to the need to calculate the length of the output map.
val fold_range_inclusive : ('k, 'v, 'cmp) t ‑> min:'k ‑> max:'k ‑> init:'a ‑> f:(key:'k ‑> data:'v ‑> 'a ‑> 'a) ‑> 'afold_range_inclusive t ~min ~max ~init ~f
folds f (with initial value ~init) over all keys (and their associated values)
that are in the range min, max (inclusive).
val range_to_alist : ('k, 'v, 'cmp) t ‑> min:'k ‑> max:'k ‑> ('k * 'v) listrange_to_alist t ~min ~max returns an associative list of the elements whose
keys lie in min, max (inclusive), with the smallest key being at the head of the
list.
val closest_key : ('k, 'v, 'cmp) t ‑> [ `Greater_or_equal_to | `Greater_than | `Less_or_equal_to | `Less_than ] ‑> 'k ‑> ('k * 'v) optionclosest_key t dir k returns the (key, value) pair in t with key closest to
k, which satisfies the given inequality bound.
For example, closest_key t `Less_than k would be the pair with the closest key to
k where key < k.
to_sequence can be used to get the same results as closest_key. It is less
efficient for individual lookups but more efficient for finding many elements starting
at some value.
val nth : ('k, 'v, _) t ‑> int ‑> ('k * 'v) optionnth t n finds the (key, value) pair of rank n (i.e. such that there are exactly n
keys strictly less than the found key), if one exists. O(log(length t) + n) time.
val nth_exn : ('k, 'v, _) t ‑> int ‑> 'k * 'vval rank : ('k, 'v, 'cmp) t ‑> 'k ‑> int optionrank t k if k is in t, returns the number of keys strictly less than k in t,
otherwise None
val to_sequence : ?order:[ `Increasing_key | `Decreasing_key ] ‑> ?keys_greater_or_equal_to:'k ‑> ?keys_less_or_equal_to:'k ‑> ('k, 'v, 'cmp) t ‑> ('k * 'v) Base.Sequence.tto_sequence ?order ?keys_greater_or_equal_to ?keys_less_or_equal_to t gives a
sequence of key-value pairs between keys_less_or_equal_to and
keys_greater_or_equal_to inclusive, presented in order. If
keys_greater_or_equal_to > keys_less_or_equal_to, the sequence is empty. Cost is
O(log n) up front and amortized O(1) to produce each element.
module type Sexp_of_m : sig ... endmodule type M_of_sexp : sig ... endmodule type Compare_m : sig ... endmodule type Hash_fold_m = Base.Hasher.Sval sexp_of_m__t : (module Sexp_of_m with type t = 'k) ‑> ('v ‑> Base.Sexp.t) ‑> ('k, 'v, 'cmp) t ‑> Base.Sexp.tval m__t_of_sexp : (module M_of_sexp with type comparator_witness = 'cmp and type t = 'k) ‑> (Base.Sexp.t ‑> 'v) ‑> Base.Sexp.t ‑> ('k, 'v, 'cmp) tval hash_fold_m__t : (module Hash_fold_m with type t = 'k) ‑> (Base.Hash.state ‑> 'v ‑> Base.Hash.state) ‑> Base.Hash.state ‑> ('k, 'v, _) t ‑> Base.Hash.statemodule Using_comparator : sig ... endUsing comparator is a similar interface as the toplevel of Map, except the functions
take a ~comparator:('k, 'cmp) Comparator.t where the functions at the toplevel of
Map takes a ('k, 'cmp) comparator.