Module Core_kernel.Blang

Boolean expressions.

A blang is a boolean expression built up by applying the usual boolean operations to properties that evaluate to true or false in some context.


For example, imagine writing a config file for an application that filters a stream of integers. Your goal is to keep only those integers that are multiples of either -3 or 5. Using Blang for this task, the code might look like:

      module Property = struct
        type t =
          | Multiple_of of int
          | Positive
          | Negative
        [@@deriving sexp]

        let eval t num =
          match t with
          | Multiple_of n -> num % n = 0
          | Positive      -> num > 0
          | Negative      -> num < 0

      type config = {
        keep : Property.t Blang.t;
      } [@@deriving sexp]

      let config = {
        keep = Blang.of_string "(or (and negative (multiple_of 3)) \
                               \    (and positive (multiple_of 5)))";

      let keep config num : bool =
        Blang.eval config.keep (fun p -> Property.eval p num)

Note how positive and negative and multiple_of become operators in a small, newly-defined boolean expression language that allows you to write statements like (and negative (multiple_of 3)).

Blang sexp syntax

The blang sexp syntax is almost exactly the derived one, except that:

1. Base properties are not marked explicitly. Thus, if your base property type has elements FOO, BAR, etc., then you could write the following Blang s-expressions:

        (and FOO BAR)
        (if FOO BAR BAZ)

and so on. Note that this gets in the way of using the blang "keywords" in your value language.

2. And and Or take a variable number of arguments, so that one can (and probably should) write


instead of

(and FOO (and BAR (and BAZ QUX)))
type 'a t = private
| True
| False
| And of 'a t * 'a t
| Or of 'a t * 'a t
| Not of 'a t
| If of 'a t * 'a t * 'a t
| Base of 'a

Note that the sexps are not directly inferred from the type above -- there are lots of fancy shortcuts. Also, the sexps for 'a must not look anything like blang sexps. Otherwise t_of_sexp will fail.

include sig ... end
val bin_read_t : 'a Bin_prot.Read.reader ‑> 'a t Bin_prot.Read.reader
val bin_size_t : 'a Bin_prot.Size.sizer ‑> 'a t Bin_prot.Size.sizer
val bin_write_t : 'a Bin_prot.Write.writer ‑> 'a t Bin_prot.Write.writer
val bin_shape_t : Bin_prot.Shape.t ‑> Bin_prot.Shape.t
val compare : ('a ‑> 'a ‑> ‑> 'a t ‑> 'a t ‑>
val hash_fold_t : (Base.Hash.state ‑> 'a ‑> Base.Hash.state) ‑> Base.Hash.state ‑> 'a t ‑> Base.Hash.state
val t_of_sexp : (Base.Sexp.t ‑> 'a) ‑> Base.Sexp.t ‑> 'a t
val sexp_of_t : ('a ‑> Base.Sexp.t) ‑> 'a t ‑> Base.Sexp.t

Smart constructors that simplify away constants whenever possible

module type Constructors : sig ... end
include Constructors
val base : 'a ‑> 'a t
val true_ : _ t
val false_ : _ t
val constant : Core_kernel__.Import.bool ‑> _ t

function true -> true_ | false -> false_

val not_ : 'a t ‑> 'a t
val and_ : 'a t Core_kernel__.Import.list ‑> 'a t

n-ary And

val or_ : 'a t Core_kernel__.Import.list ‑> 'a t

n-ary Or

val if_ : 'a t ‑> 'a t ‑> 'a t ‑> 'a t

if_ if then else

module O : sig ... end
val constant_value : 'a t ‑> Core_kernel__.Import.bool Core_kernel__.Import.option

constant_value t = Some b iff t = constant b

The following two functions are useful when one wants to pretend that 'a t has constructors And and Or of type 'a t list -> 'a t. The pattern of use is

      match t with
      | And (_, _) as t -> let ts = gather_conjuncts t in ...
      | Or (_, _) as t -> let ts = gather_disjuncts t in ...
      | ...

or, in case you also want to handle True (resp. False) as a special case of conjunction (disjunction)

      match t with
      | True | And (_, _) as t -> let ts = gather_conjuncts t in ...
      | False | Or (_, _) as t -> let ts = gather_disjuncts t in ...
      | ...
val gather_conjuncts : 'a t ‑> 'a t Core_kernel__.Import.list

gather_conjuncts t gathers up all toplevel conjuncts in t. For example,

val gather_disjuncts : 'a t ‑> 'a t Core_kernel__.Import.list

gather_disjuncts t gathers up all toplevel disjuncts in t. For example,

include Container.S1 with type t := a t
type 'a t
val mem : 'a t ‑> 'a ‑> equal:('a ‑> 'a ‑> bool) ‑> bool

Checks whether the provided element is there, using equal.

val length : 'a t ‑> int
val is_empty : 'a t ‑> bool
val iter : 'a t ‑> f:('a ‑> unit) ‑> unit
val fold : 'a t ‑> init:'accum ‑> f:('accum ‑> 'a ‑> 'accum) ‑> 'accum

fold t ~init ~f returns f (... f (f (f init e1) e2) e3 ...) en, where e1..en are the elements of t

val fold_result : 'a t ‑> init:'accum ‑> f:('accum ‑> 'a ‑> ('accum'eBase.Result.t) ‑> ('accum'eBase.Result.t

fold_result t ~init ~f is a short-circuiting version of fold that runs in the Result monad. If f returns an Error _, that value is returned without any additional invocations of f.

val fold_until : 'a t ‑> init:'accum ‑> f:('accum ‑> 'a ‑> ('accum'finalBase__.Container_intf.Continue_or_stop.t) ‑> finish:('accum ‑> 'final) ‑> 'final

fold_until t ~init ~f ~finish is a short-circuiting version of fold. If f returns Stop _ the computation ceases and results in that value. If f returns Continue _, the fold will proceed. If f never returns Stop _, the final result is computed by finish.

val exists : 'a t ‑> f:('a ‑> bool) ‑> bool

Returns true if and only if there exists an element for which the provided function evaluates to true. This is a short-circuiting operation.

val for_all : 'a t ‑> f:('a ‑> bool) ‑> bool

Returns true if and only if the provided function evaluates to true for all elements. This is a short-circuiting operation.

val count : 'a t ‑> f:('a ‑> bool) ‑> int

Returns the number of elements for which the provided function evaluates to true.

val sum : (module Base.Commutative_group.S with type t = 'sum) ‑> 'a t ‑> f:('a ‑> 'sum) ‑> 'sum

Returns the sum of f i for all i in the container.

val find : 'a t ‑> f:('a ‑> bool) ‑> 'a option

Returns as an option the first element for which f evaluates to true.

val find_map : 'a t ‑> f:('a ‑> 'b option) ‑> 'b option

Returns the first evaluation of f that returns Some, and returns None if there is no such element.

val to_list : 'a t ‑> 'a list
val to_array : 'a t ‑> 'a array
val min_elt : 'a t ‑> compare:('a ‑> 'a ‑> int) ‑> 'a option

Returns a minimum (resp maximum) element from the collection using the provided compare function, or None if the collection is empty. In case of a tie, the first element encountered while traversing the collection is returned. The implementation uses fold so it has the same complexity as fold.

val max_elt : 'a t ‑> compare:('a ‑> 'a ‑> int) ‑> 'a option

Blang.t sports a substitution monad:

Note: bind t f does short-circuiting, so f may not be called on every variable in t.

include Core_kernel__.Std_internal.Monad with type t := a t
type 'a t
include Base__.Monad_intf.S_without_syntax with type t := a t
type 'a t
include Base__.Monad_intf.Infix with type t := a t
type 'a t
val (>>=) : 'a t ‑> ('a ‑> 'b t) ‑> 'b t

t >>= f returns a computation that sequences the computations represented by two monad elements. The resulting computation first does t to yield a value v, and then runs the computation returned by f v.

val (>>|) : 'a t ‑> ('a ‑> 'b) ‑> 'b t

t >>| f is t >>= (fun a -> return (f a)).

module Monad_infix : Base__.Monad_intf.Infix with type t := a t
val bind : 'a t ‑> f:('a ‑> 'b t) ‑> 'b t

bind t ~f = t >>= f

val return : 'a ‑> 'a t

return v returns the (trivial) computation that returns v.

val map : 'a t ‑> f:('a ‑> 'b) ‑> 'b t

map t ~f is t >>| f.

val join : 'a t t ‑> 'a t

join t is t >>= (fun t' -> t').

val ignore_m : 'a t ‑> unit t

ignore_m t is map t ~f:(fun _ -> ()). ignore_m used to be called ignore, but we decided that was a bad name, because it shadowed the widely used Pervasives.ignore. Some monads still do let ignore = ignore_m for historical reasons.

val all : 'a t list ‑> 'a list t
val all_unit : unit t list ‑> unit t
val all_ignore : unit t list ‑> unit t
  • Deprecated [since 2018-02] Use [all_unit]
include Base__.Monad_intf.Syntax with type t := a t
type 'a t
module Let_syntax : sig ... end
val values : 'a t ‑> 'a Core_kernel__.Import.list

values t forms the list containing every v for which Base v is a subexpression of t

val eval : 'a t ‑> ('a ‑> Core_kernel__.Import.bool) ‑> Core_kernel__.Import.bool

eval t f evaluates the proposition t relative to an environment f that assigns truth values to base propositions.

val eval_set : universe:('elt'comparatorSet.t Lazy.t ‑> ('a ‑> ('elt'comparatorSet.t) ‑> 'a t ‑> ('elt'comparatorSet.t

eval_set ~universe set_of_base expression returns the subset of elements e in universe that satisfy eval expression (fun base -> Set.mem (set_of_base base) e).

eval_set assumes, but does not verify, that set_of_base always returns a subset of universe. If this doesn't hold, then eval_set's result may contain elements not in universe.

And set1 set2 represents the elements that are both in set1 and set2, thus in the intersection of the two sets. Symmetrically, Or set1 set2 represents the union of set1 and set2.

val specialize : 'a t ‑> ('a ‑> [ `Known of Core_kernel__.Import.bool | `Unknown ]) ‑> 'a t

specialize t f partially evaluates t according to a perhaps-incomplete assignment f of the values of base propositions. The following laws (at least partially) characterize its behavior.

val invariant : 'a t ‑> Core_kernel__.Import.unit
module Stable : sig ... end