A non-moving (in the GC sense) contiguous range of bytes, useful for I/O operations.
An iobuf consists of:
All iobuf operations are restricted to operate within the limits. Initially, the
window of an iobuf is identical to the limits. A phantom type, "seek" permission,
controls whether or not code is allowed to change the limits and window. With seek
permission, the limits can be narrow
ed, but can never be widened, and the window can
be set to an arbitrary subrange of the limits.
A phantom type controls whether code can read and write bytes in the bigstring (within the limits) or can only read them.
To present a restricted view of an iobuf to a client, one can create a sub-iobuf or add a type constraint.
The first type parameter controls whether the iobuf can be written to. The second type parameter controls whether the window and limits can be changed.
See the Perms
module for information on how the first type parameter is used.
To allow no_seek
or seek
access, a function's type uses _
rather than no_seek
as the type argument to t
. Using _
allows the function to be directly applied to
either permission. Using a specific permission would require code to use coercion
:>
.
create ~len
creates a new iobuf, backed by a bigstring of length len
,
with the limits and window set to the entire bigstring.
of_bigstring bigstring ~pos ~len
returns an iobuf backed by bigstring
, with the
window and limits specified starting at pos
and of length len
.
forbid immutable
to prevent aliasing
of_string s
returns a new iobuf whose contents are s
.
set_bounds_and_buffer ~src ~dst
copies bounds metadata (i.e., limits and window) and
shallowly copies the buffer (data pointer) from src
to dst
. It does not access
data, but does allow access through dst
. This makes dst
an alias of src
.
Because set_bounds_and_buffer
creates an alias, we disallow immutable src
and
dst
using [> write]
. Otherwise, one of src
or dst
could be read_write :>
read
and the other immutable :> read
, which would allow to write the immutable
alias's data through the read_write
alias.
set_bounds_and_buffer
is typically used to allocate a frame iobuf only once. This
frame can be updated repeatedly and handed to users, without further allocation. Only
the most allocation-sensitive applications need this.
set_bounds_and_buffer_sub ?pos ?len ~src ~dst ()
is a more efficient version of:
set_bounds_and_buffer ~src:(Iobuf.sub_shared ?pos ?len src) ~dst
.
set_bounds_and_buffer ~src ~dst
is not the same as set_bounds_and_buffer_sub ~dst
~src ()
because the limits are narrowed in the latter case.
One may wonder why you'd want to call no_seek
, given that a cast is already
possible, e.g. t : (_, seek) t :> (_, no_seek) t
. It turns out that if you want to
define some f : (_, _) t -> unit
of your own, which can be conveniently applied to
seek
iobufs without the user having to cast seek
up, you need this no_seek
function.
read_only
is more of an historical convenience now that read_write
is a
polymorphic variant, as one can now explicitly specify the general type for an
argument with something like t : (_ perms, _) t :> (read, _) t
.
capacity t
returns the size of t
's limits subrange. The capacity of an iobuf can
be reduced via narrow
.
length t
returns the size of t
's window.
is_empty t
is length t = 0
.
One can call Lo_bound.window t
to get a snapshot of the lower bound of the
window, and then later restore that snapshot with Lo_bound.restore
. This is
useful for speculatively parsing, and then rewinding when there isn't enough data to
finish.
Similarly for Hi_bound.window
and Lo_bound.restore
.
Using a snapshot with a different iobuf, even a sub iobuf of the snapshotted one, has unspecified results. An exception may be raised, or a silent error may occur. However, the safety guarantees of the iobuf will not be violated, i.e., the attempt will not enlarge the limits of the subject iobuf.
flip_lo t
sets the window to range from the lower limit to the lower bound of the
old window. This is typically called after a series of Fill
s, to reposition the
window in preparation to Consume
the newly written data.
The bounded version narrows the effective limit. This can preserve some data near the
limit, such as an hypothetical packet header, in the case of bounded_flip_lo
or
unfilled suffix of a buffer, in bounded_flip_hi
.
compact t
copies data from the window to the lower limit of the iobuf and sets the
window to range from the end of the copied data to the upper limit. This is typically
called after a series of Consume
s to save unread data and prepare for the next
series of Fill
s and flip_lo
.
flip_hi t
sets the window to range from the the upper bound of the current window to
the upper limit. This operation is dual to flip_lo
and is typically called when the
data in the current (narrowed) window has been processed and the window needs to be
positioned over the remaining data in the buffer. For example:
(* ... determine initial_data_len ... *)
Iobuf.resize buf ~len:initial_data_len;
(* ... and process initial data ... *)
Iobuf.flip_hi buf;
Now the window of buf
ranges over the remainder of the data.
"consume" and "fill" functions access data at the lower bound of the window and advance lower bound of the window. "peek" and "poke" functions access data but do not advance the window.
to_string_hum t
produces a readable, multi-line representation of an iobuf.
bounds
defaults to `Limits
and determines how much of the contents are shown.
Consume.string t ~len
reads len
characters (all, by default) from t
into a new
string and advances the lower bound of the window accordingly.
Fill.bin_prot X.bin_write_t t x
writes x
to t
in bin-prot form, advancing past
the bytes written.
Peek
and Poke
functions access a value at pos
from the lower bound of the window
and do not advance.
Poke.bin_prot X.bin_write_t t x
writes x
to the beginning of t
in binary form
without advancing.
Unsafe
has submodules that are like their corresponding module, except with no range
checks.
fill_bin_prot
writes a bin-prot value to the lower bound of the window, prefixed by
its length, and advances by the amount written. fill_bin_prot
returns an error if
the window is too small to write the value.
consume_bin_prot t reader
reads a bin-prot value from the lower bound of the window,
which should have been written using fill_bin_prot
, and advances the window by the
amount read. consume_bin_prot
returns an error if there is not a complete message
in the window and in that case the window is left unchanged.
Don't use these without a good reason, as they are incompatible with similar functions
in Reader
and Writer
. They use a 4-byte length rather than an 8-byte length.
Blit_consume
copies between iobufs and advances src
but does not advance dst
.
Blit_fill
copies between iobufs and advances dst
but does not advance src
.
Blit_consume_and_fill
copies between iobufs and advances both src
and dst
.
recvmmsg
's context comprises data needed by the system call.
recvmmsg_assume_fd_is_nonblocking fd context
returns the number of context
iobufs
read into (or errno
). fd
must not block. THREAD_IO_CUTOFF
is ignored.
EINVAL
is returned if an Iobuf
passed to Recvmmsg_context.create
has its buf
or limits changed.
Expert
module is for building efficient out-of-module Iobuf
abstractions.