module Bigstring: Bigstring
typet =
(char, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t
val create : ?max_mem_waiting_gc:Byte_units.t -> int -> t
create length
length
.
Content is undefined.max_mem_waiting_gc
: default = 256 M in OCaml <= 3.12, 1 G otherwise. As
the total allocation of calls to create
approach max_mem_waiting_gc
,
the pressure in the garbage collector to be more agressive will increase.val init : int -> f:(int -> char) -> t
init n ~f
creates a bigstring t
of length n
, with t.{i} = f i
val of_string : ?pos:int -> ?len:int -> string -> t
of_string ?pos ?len str
len
in str
starting at position pos
.pos
: default = 0len
: default = String.length str - pos
val to_string : ?pos:int -> ?len:int -> t -> string
to_string ?pos ?len bstr
Invalid_argument
if the string would exceed runtime limits.len
in bstr
starting at position pos
.pos
: default = 0len
: default = length bstr - pos
val check_args : loc:string -> pos:int -> len:int -> t -> unit
check_args ~loc ~pos ~len bstr
checks the position and length
arguments pos
and len
for bigstrings bstr
.Invalid_argument
if these arguments are illegal for the given
bigstring using loc
to indicate the calling context.val get_opt_len : t -> pos:int -> int option -> int
get_opt_len bstr ~pos opt_len
bstr
starting at position pos
and given optional length
opt_len
. This function does not check the validity of its
arguments. Use Bigstring.check_args
for that purpose.val length : t -> int
length bstr
bstr
.val sub : (t, t) Blit_intf.sub
sub ?pos ?len bstr
bstr
that starts at
position pos
and has length len
. The sub-bigstring is a unique copy
of the memory region, i.e. modifying it will not modify the original
bigstring. Note that this is different than the behavior of the
standard OCaml Array1.sub, which shares the memory.?pos:int -> ?len:int -> t -> t
: sub_shared ?pos ?len bstr
bstr
that starts at position pos
and has length len
. The sub-bigstring
shares the same memory region, i.e. modifying it will modify the
original bigstring. Holding on to the sub-bigstring will also keep
the (usually bigger) original one around.pos
: default = 0len
: default = Bigstring.length bstr - pos
val get : t -> int -> char
get t pos
returns the character at pos
val set : t -> int -> char -> unit
set t pos
sets the character at pos
val is_mmapped : t -> bool
is_mmapped bstr
bstr
is
memory-mapped.blit ~src ?src_pos ?src_len ~dst ?dst_pos ()
blits src_len
characters
from src
starting at position src_pos
to dst
at position dst_pos
.include Blit.S
module To_string:Blit.S_distinct
with type src := t
with type dst := string
module From_string:Blit.S_distinct
with type src := string
with type dst := t
val map_file : shared:bool -> Unix.file_descr -> int -> t
map_file shared fd n
memory-maps n
characters of the data
associated with descriptor fd
to a bigstring. Iff shared
is
true
, all changes to the bigstring will be reflected in the file.val find : ?pos:int -> ?len:int -> char -> t -> int option
find ?pos ?len char t
returns Some i
for the smallest i >= pos
such that
t.{i} = char
, or None
if there is no such i
.pos
: default = 0len
: default = length bstr - pos
val unsafe_destroy : t -> unit
unsafe_destroy bstr
destroys the bigstring by deallocating its associated data or,
if memory-mapped, unmapping the corresponding file, and setting all dimensions to
zero. This effectively frees the associated memory or address-space resources
instantaneously. This feature helps working around a bug in the current OCaml
runtime, which does not correctly estimate how aggressively to reclaim such resources.
This operation is safe unless you have passed the bigstring to another thread that is
performing operations on it at the same time. Access to the bigstring after this
operation will yield array bounds exceptions.
Raises Failure
if the bigstring has already been deallocated (or deemed "external",
which is treated equivalently), or if it has proxies, i.e. other bigstrings referring
to the same data.
val unsafe_get_int8 : t -> pos:int -> int
val unsafe_set_int8 : t -> pos:int -> int -> unit
val unsafe_get_uint8 : t -> pos:int -> int
val unsafe_set_uint8 : t -> pos:int -> int -> unit
val unsafe_get_int16_le : t -> pos:int -> int
val unsafe_get_int16_be : t -> pos:int -> int
val unsafe_set_int16_le : t -> pos:int -> int -> unit
val unsafe_set_int16_be : t -> pos:int -> int -> unit
val unsafe_get_uint16_le : t -> pos:int -> int
val unsafe_get_uint16_be : t -> pos:int -> int
val unsafe_set_uint16_le : t -> pos:int -> int -> unit
val unsafe_set_uint16_be : t -> pos:int -> int -> unit
val unsafe_get_int32_le : t -> pos:int -> int
val unsafe_get_int32_be : t -> pos:int -> int
val unsafe_set_int32_le : t -> pos:int -> int -> unit
val unsafe_set_int32_be : t -> pos:int -> int -> unit
val unsafe_get_uint32_le : t -> pos:int -> int
val unsafe_get_uint32_be : t -> pos:int -> int
val unsafe_set_uint32_le : t -> pos:int -> int -> unit
val unsafe_set_uint32_be : t -> pos:int -> int -> unit
val unsafe_get_int64_le_exn : t -> pos:int -> int
val unsafe_get_int64_be_exn : t -> pos:int -> int
val unsafe_set_int64_le : t -> pos:int -> int -> unit
val unsafe_set_int64_be : t -> pos:int -> int -> unit
val unsafe_get_int32_t_le : t -> pos:int -> Int32.t
val unsafe_get_int32_t_be : t -> pos:int -> Int32.t
val unsafe_set_int32_t_le : t -> pos:int -> Int32.t -> unit
val unsafe_set_int32_t_be : t -> pos:int -> Int32.t -> unit
val unsafe_get_int64_t_le : t -> pos:int -> Int64.t
val unsafe_get_int64_t_be : t -> pos:int -> Int64.t
val unsafe_set_int64_t_le : t -> pos:int -> Int64.t -> unit
val unsafe_set_int64_t_be : t -> pos:int -> Int64.t -> unit
val get_padded_fixed_string : padding:char -> t -> pos:int -> len:int -> unit -> string
val set_padded_fixed_string : padding:char -> t -> pos:int -> len:int -> string -> unit
val t_of_sexp : Sexplib.Sexp.t -> t
val sexp_of_t : t -> Sexplib.Sexp.t
val bin_t : t Bin_prot.Type_class.t
val bin_read_t : t Bin_prot.Read_ml.reader
val bin_read_t_ : t Bin_prot.Unsafe_read_c.reader
val bin_read_t__ : (int -> t) Bin_prot.Unsafe_read_c.reader
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write_ml.writer
val bin_write_t_ : t Bin_prot.Unsafe_write_c.writer
val bin_writer_t : t Bin_prot.Type_class.writer
create length
init n ~f
creates a bigstring t
of length n
, with t.{i} = f i
of_string ?pos ?len str
to_string ?pos ?len bstr
check_args ~loc ~pos ~len bstr
checks the position and length
arguments pos
and len
for bigstrings bstr
.get_opt_len bstr ~pos opt_len
length bstr
sub ?pos ?len bstr
sub_shared ?pos ?len bstr
get t pos
returns the character at pos
set t pos
sets the character at pos
is_mmapped bstr
blit ~src ?src_pos ?src_len ~dst ?dst_pos ()
blits src_len
characters
from src
starting at position src_pos
to dst
at position dst_pos
.map_file shared fd n
memory-maps n
characters of the data
associated with descriptor fd
to a bigstring. Iff shared
is
true
, all changes to the bigstring will be reflected in the file.find ?pos ?len char t
returns Some i
for the smallest i >= pos
such that
t.{i} = char
, or None
if there is no such i
.unsafe_destroy bstr
destroys the bigstring by deallocating its associated data or,
if memory-mapped, unmapping the corresponding file, and setting all dimensions to
zero. This effectively frees the associated memory or address-space resources
instantaneously. This feature helps working around a bug in the current OCaml
runtime, which does not correctly estimate how aggressively to reclaim such resources.
This operation is safe unless you have passed the bigstring to another thread that is
performing operations on it at the same time. Access to the bigstring after this
operation will yield array bounds exceptions.