Module type Pool_intf.Pool.S

module type S = Pool_intf.S

module Slots: Tuple_type.Slots 
module Slot: Tuple_type.Slot 
module Pointer: sig .. end
type 'slots t 
A pool. 'slots will look like ('a1, ..., 'an) Slots.tn, and the pool holds tuples of type 'a1 * ... * 'an.
include Invariant.S1
val pointer_is_valid : 'slots t -> 'slots Pointer.t -> bool
pointer_is_valid t pointer returns true iff pointer points to a live tuple in t, i.e. pointer is not null, not free, and is in the range of t.

A pointer might not be in the range of a pool if it comes from another pool for example. In this case unsafe_get/set functions would cause a segfault.

val id_of_pointer : 'slots t ->
'slots Pointer.t -> Pointer.Id.t
id_of_pointer t pointer returns an id that is unique for the lifetime of pointer's tuple. When the tuple is freed, the id is no longer valid, and pointer_of_id_exn will fail on it. Pointer.null () has a distinct id from all non-null pointers.
val pointer_of_id_exn : 'slots t ->
Pointer.Id.t -> 'slots Pointer.t
pointer_of_id_exn t id returns the pointer corresponding to id. It fails if the tuple corresponding to id was already freed.

pointer_of_id_exn_is_supported says whether the implementation supports pointer_of_id_exn; if not, it will always raise. We can not use the usual idiom of making pointer_of_id_exn be an Or_error.t due to problems with the value restriction.

val pointer_of_id_exn_is_supported : bool
val create : ('tuple, 'a) Slots.t ->
capacity:int -> dummy:'tuple -> ('tuple, 'a) Slots.t t
create slots ~capacity ~dummy creates an empty pool that can hold up to capacity N-tuples. The slots of dummy are stored in free tuples.
val capacity : 'a t -> int
capacity returns the maximum number of tuples that the pool can hold.
val length : 'a t -> int
length returns the number of tuples currently in the pool.

        0 <= length t <= capacity t
      

val grow : ?capacity:int -> 'a t -> 'a t
grow t ~capacity returns a new pool t' with the supplied capacity. The new pool is to be used as a replacement for t. All live tuples in t are now live in t', and valid pointers to tuples in t are now valid pointers to the identical tuple in t'. It is an error to use t after calling grow t.

grow raises if the supplied capacity isn't larger than capacity t.

val is_full : 'a t -> bool
is_full t returns true if no more tuples can be allocated in t.
val free : 'slots t -> 'slots Pointer.t -> unit
free t pointer frees the tuple pointed to by pointer from t.
val new1 : 'a0 Slots.t1 t -> 'a0 -> 'a0 Slots.t1 Pointer.t
new<N> t a0 ... a<N-1> returns a new tuple from the pool, with the tuple's slots initialized to a0 ... a<N-1>. new raises if is_full t.
val new2 : ('a0, 'a1) Slots.t2 t ->
'a0 -> 'a1 -> ('a0, 'a1) Slots.t2 Pointer.t
val new3 : ('a0, 'a1, 'a2) Slots.t3 t ->
'a0 -> 'a1 -> 'a2 -> ('a0, 'a1, 'a2) Slots.t3 Pointer.t
val new4 : ('a0, 'a1, 'a2, 'a3) Slots.t4 t ->
'a0 ->
'a1 -> 'a2 -> 'a3 -> ('a0, 'a1, 'a2, 'a3) Slots.t4 Pointer.t
val new5 : ('a0, 'a1, 'a2, 'a3, 'a4) Slots.t5 t ->
'a0 ->
'a1 ->
'a2 -> 'a3 -> 'a4 -> ('a0, 'a1, 'a2, 'a3, 'a4) Slots.t5 Pointer.t
val new6 : ('a0, 'a1, 'a2, 'a3, 'a4, 'a5) Slots.t6 t ->
'a0 ->
'a1 ->
'a2 ->
'a3 ->
'a4 -> 'a5 -> ('a0, 'a1, 'a2, 'a3, 'a4, 'a5) Slots.t6 Pointer.t
val new7 : ('a0, 'a1, 'a2, 'a3, 'a4, 'a5, 'a6) Slots.t7 t ->
'a0 ->
'a1 ->
'a2 ->
'a3 ->
'a4 ->
'a5 ->
'a6 -> ('a0, 'a1, 'a2, 'a3, 'a4, 'a5, 'a6) Slots.t7 Pointer.t
val new8 : ('a0, 'a1, 'a2, 'a3, 'a4, 'a5, 'a6, 'a7) Slots.t8 t ->
'a0 ->
'a1 ->
'a2 ->
'a3 ->
'a4 ->
'a5 ->
'a6 ->
'a7 ->
('a0, 'a1, 'a2, 'a3, 'a4, 'a5, 'a6, 'a7) Slots.t8 Pointer.t
val new9 : ('a0, 'a1, 'a2, 'a3, 'a4, 'a5, 'a6, 'a7, 'a8) Slots.t9 t ->
'a0 ->
'a1 ->
'a2 ->
'a3 ->
'a4 ->
'a5 ->
'a6 ->
'a7 ->
'a8 ->
('a0, 'a1, 'a2, 'a3, 'a4, 'a5, 'a6, 'a7, 'a8) Slots.t9 Pointer.t
val get_tuple : ('tuple, 'a) Slots.t t ->
('tuple, 'a) Slots.t Pointer.t -> 'tuple
get_tuple t pointer allocates an OCaml tuple isomorphic to the pool t's tuple pointed to by pointer.
val get : ('a, 'variant) Slots.t t ->
('a, 'variant) Slots.t Pointer.t ->
('variant, 'slot) Slot.t -> 'slot
get t pointer slot gets slot of the tuple pointed to by pointer in pool t.

set t pointer slot a sets to a the slot of the tuple pointed to by pointer in pool t.

In get and set, it is an error to refer to a pointer that has been freed. It is also an error to use a pointer with any pool other than the one the pointer was new'd from or grown to. These errors will lead to undefined behavior, but will not segfault.

unsafe_get is comparable in speed to get for immediate values, and 5%-10% faster for pointers.

unsafe_get and unsafe_set skip bounds checking, and can thus segfault.

val unsafe_get : ('a, 'variant) Slots.t t ->
('a, 'variant) Slots.t Pointer.t ->
('variant, 'slot) Slot.t -> 'slot
val set : ('a, 'variant) Slots.t t ->
('a, 'variant) Slots.t Pointer.t ->
('variant, 'slot) Slot.t -> 'slot -> unit
val unsafe_set : ('a, 'variant) Slots.t t ->
('a, 'variant) Slots.t Pointer.t ->
('variant, 'slot) Slot.t -> 'slot -> unit
val sexp_of_t : ('slots -> Sexplib.Sexp.t) -> 'slots t -> Sexplib.Sexp.t

pointer_is_valid t pointer returns true iff pointer points to a live tuple in t, i.e. pointer is not null, not free, and is in the range of t.

A pointer might not be in the range of a pool if it comes from another pool for example. In this case unsafe_get/set functions would cause a segfault.

id_of_pointer t pointer returns an id that is unique for the lifetime of pointer's tuple. When the tuple is freed, the id is no longer valid, and pointer_of_id_exn will fail on it. Pointer.null () has a distinct id from all non-null pointers.

pointer_of_id_exn t id returns the pointer corresponding to id. It fails if the tuple corresponding to id was already freed.

pointer_of_id_exn_is_supported says whether the implementation supports pointer_of_id_exn; if not, it will always raise. We can not use the usual idiom of making pointer_of_id_exn be an Or_error.t due to problems with the value restriction.

create slots ~capacity ~dummy creates an empty pool that can hold up to capacity N-tuples. The slots of dummy are stored in free tuples.

capacity returns the maximum number of tuples that the pool can hold.

length returns the number of tuples currently in the pool.

        0 <= length t <= capacity t
      


grow t ~capacity returns a new pool t' with the supplied capacity. The new pool is to be used as a replacement for t. All live tuples in t are now live in t', and valid pointers to tuples in t are now valid pointers to the identical tuple in t'. It is an error to use t after calling grow t.

grow raises if the supplied capacity isn't larger than capacity t.

default is 2 * capacity t

is_full t returns true if no more tuples can be allocated in t.

free t pointer frees the tuple pointed to by pointer from t.

new<N> t a0 ... a<N-1> returns a new tuple from the pool, with the tuple's slots initialized to a0 ... a<N-1>. new raises if is_full t.

get_tuple t pointer allocates an OCaml tuple isomorphic to the pool t's tuple pointed to by pointer.

get t pointer slot gets slot of the tuple pointed to by pointer in pool t.

set t pointer slot a sets to a the slot of the tuple pointed to by pointer in pool t.

In get and set, it is an error to refer to a pointer that has been freed. It is also an error to use a pointer with any pool other than the one the pointer was new'd from or grown to. These errors will lead to undefined behavior, but will not segfault.

unsafe_get is comparable in speed to get for immediate values, and 5%-10% faster for pointers.

unsafe_get and unsafe_set skip bounds checking, and can thus segfault.