Module Std.Stream

module Stream: Async_stream

type 'a t = 'a Tail.Stream.t 
sexp_of_t t f returns a sexp of all of the elements currently available in the stream. It is just for display purposes. There is no t_of_sexp.
val create : ('a Tail.t -> unit) -> 'a t
type ('a, 'execution_context) next_ = 
| Nil
| Cons of 'a * ('a, 'execution_context) Raw_stream.t
next t returns a deferred that will become determined when the next part of the stream is determined. This is Cons (v, t'), where v is the next element of the stream and t' is the rest of the stream, or with Nil at the end of the stream.
type 'a next = ('a, Execution_context.t) next_ 
val next : 'a t -> 'a next Deferred.t
val first_exn : 'a t -> 'a Deferred.t
first_exn t returns a deferred that becomes determined with the first element of t.

Streams can be converted to and from lists. Although, conversion to a list returns a deferred, because the stream is determined asynchronously.
val of_list : 'a list -> 'a t
of_list l returns a stream with the elements of list l.
val to_list : 'a t -> 'a list Deferred.t
to_list t returns a deferred that will become determined with the list of elements in t, if the end of t is reached.
val of_fun : (unit -> 'a Deferred.t) -> 'a t
of_fun f returns a stream whose elements are determined by calling f forever.
val copy_to_tail : 'a t -> 'a Tail.t -> unit Deferred.t
copy_to_tail t tail reads elements from t and puts them in tail, until the end of t is reached.

Sequence operations ---------------------------------------------------------------------- There are the usual sequence operations:

      append, fold, iter, map, filter_map, take
   

There are also deferred variants:

      iter', map', filter_map'
   

These take anonymous functions that return deferreds generalizing the usual sequence operation and allowing the client to control the rate at which the sequence is processed.

val append : 'a t -> 'a t -> 'a t
append t1 t2 returns a stream with all the values of t1, in order, and if t1 ends, these values are followed by all the values of t2.
val concat : 'a t t -> 'a t
concat t takes a stream of streams and produces a stream that is the concatenation of each stream in order (you see all of stream 1, then all of stream 2... etc.)
val available_now : 'a t -> 'a list * 'a t
available_now t returns t prefix of t that is available now, along with the rest of the stream.
val filter_deprecated : 'a t -> f:('a -> bool) -> 'a t
filter_deprecated s ~f returns a stream with one element, v, for each v in s such with f v = true.

Using filter_deprecated can easily lead to space leaks. It is better to use Async.Pipe than Async.Stream.

val filter_map_deprecated : 'a t -> f:('a -> 'b option) -> 'b t
filter_map_deprecated s ~f returns a stream with one element, v', for each v in s such with f v = Some v'.

Using filter_map_deprecated can easily lead to space leaks. It is better to use Async.Pipe than Async.Stream.

val fold' : 'a t ->
init:'b -> f:('b -> 'a -> 'b Deferred.t) -> 'b Deferred.t
fold' t ~init ~f is like list fold, walking over the elements of the stream in order, as they become available. fold' returns a deferred that will yield the final value of the accumulator, if the end of the stream is reached.
val fold : 'a t -> init:'b -> f:('b -> 'a -> 'b) -> 'b Deferred.t
fold t ~init ~f is a variant of fold' in which f does not return a deferred.
val iter' : 'a t -> f:('a -> unit Deferred.t) -> unit Deferred.t
iter' t ~f applies f to each element of the stream in turn, as they become available. It continues onto the next element only after the deferred returned by f becomes determined.
val closed : 'a t -> unit Deferred.t
closed t returns a deferred that becomes determined when the end of t is reached.
val iter : 'a t -> f:('a -> unit) -> unit
iter t ~f = don't_wait_for (iter' t ~f:(fun a -> f a; Deferred.unit))
val take_until : 'a t -> unit Deferred.t -> 'a t
take_until t d returns a stream t' that has the same elements as t up until d becomes determined.
val iter_durably' : 'a t -> f:('a -> unit Deferred.t) -> unit Deferred.t
iter_durably' t ~f is like iter' t ~f, except if f raises an exception it continues with the next element of the stream *and* reraises the exception (to the monitor in scope when iter_durably was called).

iter_durably t ~f is like iter t ~f, except if f raises an exception it continues with the next element of the stream *and* reraises the exception (to the monitor in scope when iter_durably was called).

iter_durably_report_end t ~f is equivalent to iter_durably' t ~f:(fun x -> return (f x)) but it is more efficient

val iter_durably : 'a t -> f:('a -> unit) -> unit
val iter_durably_report_end : 'a t -> f:('a -> unit) -> unit Deferred.t
val length : 'a t -> int Deferred.t
length s returns a deferred that is determined when the end of s is reached, taking the value of the number of elements in s
val map' : 'a t -> f:('a -> 'b Deferred.t) -> 'b t
map' t f creates a new stream that with one element, (f v), for each element v of t.
val map : 'a t -> f:('a -> 'b) -> 'b t
map t ~f creates a new stream that with one element, (f v), for each element v of t. map t f = map' t ~f:(fun a -> return (f a)).
val first_n : 'a t -> int -> 'a t
first_n t n returns a stream with the first n elements of t, if t has n or more elements, or it returns t.

Stream generation ----------------------------------------------------------------------
val unfold : 'b -> f:('b -> ('a * 'b) option Deferred.t) -> 'a t
unfold b f returns a stream a1; a2; ...; an whose elements are determined by the equations:
      b0 = b
      Some (a1, b1) = f b0
      Some (a2, b2) = f b1
      ...
      None = f bn
   


Miscellaneous operations ----------------------------------------------------------------------
val split : ?stop:unit Deferred.t ->
?f:('a -> [ `Continue | `Found of 'b ]) ->
'a t ->
'a t *
[ `End_of_stream
| `Found of 'b * 'a t
| `Stopped of 'a t ] Deferred.t
split ~stop ~f t returns a pair (p, d), where p is a prefix of t that ends for one of three reasons:
      1. [t] ends
      2. stop becomes determined
      3. f returns `Found
   
The deferred d describes why the prefix ended, and returns the suffix of the stream in case (2) or (3).
val find : 'a t ->
f:('a -> bool) ->
[ `End_of_stream | `Found of 'a * 'a t ] Deferred.t
find ~f t returns a deferred that becomes determined when f x is true for some element of t, or if the end of the stream is reached
val ungroup : 'a list t -> 'a t
ungroup t takes a stream of lists and unpacks the items from each list into a single stream
val interleave : 'a t t -> 'a t
interleave list takes a stream of streams and returns a stream of their items interleaved as they become determined. The interleaved stream will be closed when the outer stream and all of the inner streams have been closed.

The Raw interface exposed here is for async's internal use only. It must be exported here because we want the Stream.t type to be abstract, so that is shows up nicely in type errors, yet other async code defined later needs to deal with the raw type.
include Raw
val sexp_of_t : ('a -> Sexplib.Sexp.t) -> 'a t -> Sexplib.Sexp.t
sexp_of_t t f returns a sexp of all of the elements currently available in the stream. It is just for display purposes. There is no t_of_sexp.

create f returns a stream t and calls f tail, where the elements of the stream are determined as the tail is extended, and the end of the stream is reached when the tail is closed.

next t returns a deferred that will become determined when the next part of the stream is determined. This is Cons (v, t'), where v is the next element of the stream and t' is the rest of the stream, or with Nil at the end of the stream.

first_exn t returns a deferred that becomes determined with the first element of t.

Streams can be converted to and from lists. Although, conversion to a list returns a deferred, because the stream is determined asynchronously.

of_list l returns a stream with the elements of list l.

to_list t returns a deferred that will become determined with the list of elements in t, if the end of t is reached.

of_fun f returns a stream whose elements are determined by calling f forever.

copy_to_tail t tail reads elements from t and puts them in tail, until the end of t is reached.

Sequence operations ---------------------------------------------------------------------- There are the usual sequence operations:

      append, fold, iter, map, filter_map, take
   

There are also deferred variants:

      iter', map', filter_map'
   

These take anonymous functions that return deferreds generalizing the usual sequence operation and allowing the client to control the rate at which the sequence is processed.

append t1 t2 returns a stream with all the values of t1, in order, and if t1 ends, these values are followed by all the values of t2.

concat t takes a stream of streams and produces a stream that is the concatenation of each stream in order (you see all of stream 1, then all of stream 2... etc.)

available_now t returns t prefix of t that is available now, along with the rest of the stream.

filter_deprecated s ~f returns a stream with one element, v, for each v in s such with f v = true.

Using filter_deprecated can easily lead to space leaks. It is better to use Async.Pipe than Async.Stream.

filter_map_deprecated s ~f returns a stream with one element, v', for each v in s such with f v = Some v'.

Using filter_map_deprecated can easily lead to space leaks. It is better to use Async.Pipe than Async.Stream.

fold' t ~init ~f is like list fold, walking over the elements of the stream in order, as they become available. fold' returns a deferred that will yield the final value of the accumulator, if the end of the stream is reached.

fold t ~init ~f is a variant of fold' in which f does not return a deferred.

iter' t ~f applies f to each element of the stream in turn, as they become available. It continues onto the next element only after the deferred returned by f becomes determined.

closed t returns a deferred that becomes determined when the end of t is reached.

iter t ~f = don't_wait_for (iter' t ~f:(fun a -> f a; Deferred.unit))

take_until t d returns a stream t' that has the same elements as t up until d becomes determined.

iter_durably' t ~f is like iter' t ~f, except if f raises an exception it continues with the next element of the stream *and* reraises the exception (to the monitor in scope when iter_durably was called).

iter_durably t ~f is like iter t ~f, except if f raises an exception it continues with the next element of the stream *and* reraises the exception (to the monitor in scope when iter_durably was called).

iter_durably_report_end t ~f is equivalent to iter_durably' t ~f:(fun x -> return (f x)) but it is more efficient

length s returns a deferred that is determined when the end of s is reached, taking the value of the number of elements in s

map' t f creates a new stream that with one element, (f v), for each element v of t.

map t ~f creates a new stream that with one element, (f v), for each element v of t. map t f = map' t ~f:(fun a -> return (f a)).

first_n t n returns a stream with the first n elements of t, if t has n or more elements, or it returns t.

Stream generation ----------------------------------------------------------------------

unfold b f returns a stream a1; a2; ...; an whose elements are determined by the equations:

      b0 = b
      Some (a1, b1) = f b0
      Some (a2, b2) = f b1
      ...
      None = f bn
   


Miscellaneous operations ----------------------------------------------------------------------

split ~stop ~f t returns a pair (p, d), where p is a prefix of t that ends for one of three reasons:
      1. [t] ends
      2. stop becomes determined
      3. f returns `Found
   
The deferred d describes why the prefix ended, and returns the suffix of the stream in case (2) or (3).

find ~f t returns a deferred that becomes determined when f x is true for some element of t, or if the end of the stream is reached

ungroup t takes a stream of lists and unpacks the items from each list into a single stream

interleave list takes a stream of streams and returns a stream of their items interleaved as they become determined. The interleaved stream will be closed when the outer stream and all of the inner streams have been closed.

The Raw interface exposed here is for async's internal use only. It must be exported here because we want the Stream.t type to be abstract, so that is shows up nicely in type errors, yet other async code defined later needs to deal with the raw type.